
Sigma16 User Guide

John T. O’Donnell

Version 3.7.1, February 2024

Contents
1 Introduction 5

2 Core architecture tutorials 6
2.1 Hello, world! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A quick tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Registers, constants, and arithmetic . . . . . . . . . . . . . . . . 9
2.4 Keeping variables in memory . . . . . . . . . . . . . . . . . . . . 14
2.5 Assembly language . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Editing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Jumps and conditionals . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Machine language . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Pseudoinstructions . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 A strange program . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12.1 Trap break . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.12.2 External break . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Summary of core instruction formats . . . . . . . . . . . . . . . 36
2.13.1 RRR format . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.13.2 RX format . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 Summary of core instructions . . . . . . . . . . . . . . . . . . . 38

3 Standard architecture tutorials 39
3.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Saving registers for procedure call . . . . . . . . . . . . . . . . . 40
3.5 Branching to pc-relative address . . . . . . . . . . . . . . . . . . 40
3.6 Stack instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Arithmetic on natural numbers . . . . . . . . . . . . . . . . . . 41
3.8 Modules and linking . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 System control registers . . . . . . . . . . . . . . . . . . . . . . 41

1



3.10 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 The Sigma16 architecture 41
4.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Indexing bits in a word . . . . . . . . . . . . . . . . . . . 43
4.3.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Natural numbers . . . . . . . . . . . . . . . . . . . . . . 43
4.3.4 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.5 Notations for a word . . . . . . . . . . . . . . . . . . . . 44

4.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Register file . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Instruction control registers . . . . . . . . . . . . . . . . 47
4.5.3 Interrupt control registers . . . . . . . . . . . . . . . . . 48
4.5.4 Memory management registers . . . . . . . . . . . . . . . 49

4.6 Instruction representation . . . . . . . . . . . . . . . . . . . . . 49
4.6.1 RRR format . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6.2 RX format . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.3 EXP format . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.4 Notation for machine language . . . . . . . . . . . . . . . 52

5 Instruction set 52
5.1 Accessing memory . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 lea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.4 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.5 Stack frames . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 mul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.5 cmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.6 addc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.7 muln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.8 divn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 jumpc0, jumpc1 . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 jumpz, jumpnz . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 jal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2



5.4.1 brf, brb . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 brfc0, brbc0, brfc1, brbc1 . . . . . . . . . . . . . . . . . 66
5.4.3 brfz, brbz, brfnz, brbnz . . . . . . . . . . . . . . . . . . . 66
5.4.4 dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.1 General logic functions . . . . . . . . . . . . . . . . . . . 68
5.5.2 Word logic: logicw . . . . . . . . . . . . . . . . . . . . . 69
5.5.3 Pseudoinstructions: invw, andw, orw, xorw . . . . . . . . 69
5.5.4 Bit logic within a register: logicr . . . . . . . . . . . . . 70
5.5.5 Pseudoinstructions invr, andr, orr, xorb . . . . . . . . . . 71
5.5.6 Bit logic across registers: logicb . . . . . . . . . . . . . . 71
5.5.7 Pseudoinstructions invb, andb, orb, xorb . . . . . . . . . 71
5.5.8 Pseudoinstructions setb, clearb, moveb, movebi . . . . . 71

5.6 Bit manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.1 Shifting: shiftl, shiftr . . . . . . . . . . . . . . . . . . . . 72
5.6.2 Bit fields: extract, extracti . . . . . . . . . . . . . . . . . 73

5.7 System control . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7.1 Request to OS: trap . . . . . . . . . . . . . . . . . . . . 76
5.7.2 Accessing control: getctl, putctl . . . . . . . . . . . . . . 76
5.7.3 Context switching: resume . . . . . . . . . . . . . . . . . 76
5.7.4 Timer: timeron, timeroff . . . . . . . . . . . . . . . . . . 76

6 Summary of instruction set 76
6.0.1 RRR format . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.0.2 RX format . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.0.3 EXP format . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Assembly language 80
7.1 Programs, modules, and files . . . . . . . . . . . . . . . . . . . . 81

7.1.1 Standalone programs . . . . . . . . . . . . . . . . . . . . 81
7.1.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.3 Modules page . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.4 Editor page . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Fixed and relocatable values . . . . . . . . . . . . . . . . . . . . 85
7.2.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2 Location counter . . . . . . . . . . . . . . . . . . . . . . 87
7.2.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Code generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.2 Pseudoinstructions . . . . . . . . . . . . . . . . . . . . . 92
7.3.3 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.1 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.2 import . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3



7.4.3 export . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.4 equ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.5 reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.6 org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Object code and linker 95
8.1 Object language . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1.1 Object statement syntax . . . . . . . . . . . . . . . . . . 96
8.1.2 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.3 org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.4 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.5 import . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.6 export . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.7 relocate . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Module metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.4 Booter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.4.1 Executable code . . . . . . . . . . . . . . . . . . . . . . . 99

9 Programming 99
9.1 Structure of a program . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 How to perform commmon tasks . . . . . . . . . . . . . . . . . . 99

9.2.1 Using extract . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2.2 Copying one register to another . . . . . . . . . . . . . . 101

9.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.4 Errors: avoiding, finding, and fixing . . . . . . . . . . . . . . . . 103

9.4.1 Critical regions . . . . . . . . . . . . . . . . . . . . . . . 103
9.4.2 Robust programming . . . . . . . . . . . . . . . . . . . . 103
9.4.3 Error messages . . . . . . . . . . . . . . . . . . . . . . . 104
9.4.4 Runtime debugging . . . . . . . . . . . . . . . . . . . . . 104
9.4.5 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . 104

10 Installation 105
10.1 Command line tools . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1.1 node and npm . . . . . . . . . . . . . . . . . . . . . . . . 105
10.1.2 Configuring the shell . . . . . . . . . . . . . . . . . . . . 105
10.1.3 Testing the installation . . . . . . . . . . . . . . . . . . . 106
10.1.4 Building Sigma16 . . . . . . . . . . . . . . . . . . . . . . 106

11 About Sigma16 106
11.1 Copyright and license . . . . . . . . . . . . . . . . . . . . . . . . 106
11.2 In case of problems . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.3 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.3.1 Version 3.5.0, January 2023 . . . . . . . . . . . . . . . . 107
11.3.2 Version 3.4.0 . . . . . . . . . . . . . . . . . . . . . . . . . 107

4



11.3.3 Version 3.3.2, April 2021 . . . . . . . . . . . . . . . . . . 107
11.3.4 Version 3.2.3, development from April 2021 . . . . . . . . 107
11.3.5 Version 3.2.2, March 2021 . . . . . . . . . . . . . . . . . 107
11.3.6 Version 3.2.1, February 2021 . . . . . . . . . . . . . . . . 108

11.4 GPL3 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Version 3.7.1, February 2024

1 Introduction
Sigma16 is a computer architecture designed for research and teaching in com-
puter systems. This application provides a complete environment for experi-
menting with the architecture. It includes an editor, assembler, linker, emula-
tor, and an integrated development environment (IDE) with a graphical user
interface.

Sigma16 runs in a web browser: you don’t need to download or install
anything. To run it, click the prominent Run link on the Sigma16 Home Page:
https://jtod.github.io/home/Sigma16.

Version 3.7 of Sigma16 runs in Chrome, Edge, and Opera (the browsers
based on Chromium). It does not work fully in Safari or Firefox, although
future versions are planned for those browsers too.

There are additional command line tools that can run in a shell; see the
Installation section. There is also a digital circuit (available separately) that
implements the architecture. Using these tools, machine language programs
can run on both the emulator and the circuit.

The architecture is organized into subsets to make it easier to learn and to
use:

• The Core subset has a small instruction set which is a good starting
point for learning about computer architecture. Although simple, Core
is powerful enough to support realistic programming.

• The Standard subset offers flexible programming techniques, includ-
ing manipulation of bits, Boolean expressions, shifting, extracting fields,
arithmetic on natural numbers and arbitrary precision integers, and con-
cise support for stack frames. It also supports the study of systems pro-
gramming, providing interrupts, protection, concurrent processes, and
mutual exclusion, and memory management.

For a quick start, begin with the Core tutorials, which introduce the archi-
tecture step by step. The tutorials explain the machine, show how to program
it, and demonstrate how to enter and run a program and how to use the
programming environment. A reference section follows the tutorials.

Our focus is on fundamental concepts, ideas and principles. Sigma16 illus-
trates the fundementals of computer systems but it avoids unnecessary com-
plexity. For example, Sigma16 has just one word size (16 bits) while most

5

https://jtod.github.io/home/Sigma16


commercial machines provide a variety. That variety is useful for practical
applications but it complicates many of the details while not adding any new
fundamental ideas. Most commercial computers that achieve success in the
marketplace eventually become encrusted with complications that help sup-
port backward compatibility; this can lead to great complexity.

The following short tutorials introduce the system; full details appear in
later sections. You can keep the tutorials visible in the right panel while
following along with the examples in the main panel.

2 Core architecture tutorials

2.1 Hello, world!

Let’s begin by running a simple example program. For now, we focus only on
how to use the software tools. You don’t need to understand the example code
yet. An explanation of the program and the Sigma16 architecture will come
later.

To launch the app, visit the Sigma16 Home Page and click on the link to
run it. Sigma16 runs in the browser; you don’t need to download or install
anything.

• Click Editor, then Hello, world!. This will enter a small assembly
language program into the editor window. Later, we’ll load some of the
more complex example programs into the editor, and you can also modify
a program or type in a new one from scratch. For now, don’t worry about
the content of the program.

• Click Assembler. The assembler translates programs in assembly lan-
guage (the source program) to machine language (the object program).
Assembly language is a human-readable notation, while machine lan-
guage is what the computer can execute. When you first enter the As-
sembler tab, the assembly language text in the Editor window is copied
over; this is the source program.

• Click the Assemble button. This will do the translation. The assembly
listing is displayed: this shows the original source code along with the
machine language, and any error messages. The Show object button
displays the object code, which is the machine language program pro-
duced by the translation. The Show source button displays the original
source code, and the Show Listing button displays the assembly listing
again.

• For this simple example, we don’t need the Linker, so you can skip it.
The linker is needed for larger and more complex programs with multiple
modules, or with external references, or that need relocation.

6



• Click Processor, which shows the main components of the computer
architecture, including registers and memory. These components are
explained later. For now, just note that this page is where you can run
programs using the emulator.

• Still on the Processor page, click Boot. This reads the machine language
program into the memory, and you can see it in the Memory display. The
source code (the assembly language) appears in the bottom section. If
the assembler produced any error messages, the program will not boot
until you fix the errors.

• Click Step. The processor executes a single instruction and displays
the effects on the registers and memory: blue for using a value, and red
for modifying it. The assembly listing shows the instruction that just
executed by highlighting it in red. It also shows the instruction that will
execute next by highlighting it in blue. This is just to make it easier to
follow what is happening; the machine executes the machine language
program, which is in memory, and it ignores the assembly language listing
which is just a convenience to help you follow the program. The machine
relies only on the registers and memory, and doesn’t even "know" that
the assembly listing exists.

There is a keyboard shortcut: after you have clicked Step once, you can
press the space bar to execute the next instruction. Thus you can step
through the program by clicking Step, and then pressing the space bar
repeatedly.

• Click Step repeatedly to watch the program execute, instruction by in-
struction. When the program terminates, the small window labelled
Emulator will display Halted.

• You can also run the program to completion, without having to click
Step so many times. Click Boot again to get the machine back into the
initial state. Now click Run, and the program will continue executing
instructions until it halts.

To run the program slowly, click Step repeatedly. To run the program faster
but without updating the display after each instruction, click Run. At any time
you can click Pause to stop the processor, and you can resume execution with
either Step or Run. Sometimes it’s useful to let the processor run at full speed
until it reaches a particular instruction, and then stop. This can be done by
setting a breakpoint (described in the Breakpoint tutorial below).

To exit the app, just close the browser window or tab. This may put up
a dialogue box warning that any unsaved data may be lost and asking you to
confirm.

7



2.2 A quick tour

This tutorial introduces the main components of the architecture as well as
the graphical user interface.

The main window contains two main sections. The largest area, on the left
side, is the main working area. When the program launches, this will show
the Welcome page. The user guide is on the right side. At the top is a row
of buttons (Welcome, Examples, etc.). These select which page is displayed in
the main working area.

It’s convenient to see the main working area and the user guide side by side.
Begin by resizing the entire window (bigger is better). Then you can change
the amount of space given to the user guide by clicking the arrow symbols
on the right side of the top button bar. These arrows will expand or shrink
the user guide: the small arrows adjust by one pixel, the larger arrows by ten
pixels. If you resize the entire browser window, Sigma16 will maintain the
same relative sizes of the main working area and the user guide sections.

If your screen is small, and the main working area isn’t big enough, click
Hide User Guide and all the space will be made available to it. The button
will change to Show User Guide.

You can also open the User Guide in a separate browser tab or window.
The Welcome page contains a link to do this.

The main working area has several pages, with buttons at the top to switch
between them:

• Welcome contains some introductory information and links.

• Examples contains a collection of assembly language programs orga-
nized by the architecture subset. Start with the Core examples.

• Modules shows a summary of all the files and modules you currently
have open. It also provides buttons allowing you to open files on your
computer, close them, and select one to work on.

• Editor shows the selected module, where it can be edited. You can
assemble and execute the selected module. To run a program, you’ll
load it into the Editor (there are several ways to do this), then assemble
it (Assembler tab) and then run it (Processor tab).

• Assembler translates a program from assembly language to machine
language, and shows the assembly isting as well as the object code.

• Linker is used in the Standard and System architectures, but it is not
needed for Core. (The linker combines a collection of object code modules
into a single executable program, and also performs name resolution and
relocation.)

• Processor shows the components of the architecture and executes ma-
chine language programs.

8



• Options allows you to configure how the system operates.

• About gives general information, including version.

• Hide User Guide makes the entire window available to the main work-
ing area. It is a toggle that changes to Show User Guide.

2.3 Registers, constants, and arithmetic

Programs do most of their work using the register file, which is an array of
16 registers named R0, R1, R2, . . . , R15. The Register File is displayed in a
box on the Processor page.

A register is a circuit that can hold a number, and the elements of the
register file can be used to hold variable values. They are analogous to the
registers in a calculator: think of each register as a box that can hold a number,
and think of the register name as a variable name. Two of the registers, R0
and R15, are special and should not be used to hold variables.

A computer program is a sequence of instructions. Instructions are sim-
ilar to statements in a programming language, but they are simpler.

Sigma16 performs arithmetic on data in registers. To do any computation
on some numbers, we first need to get those numbers into registers. The lea
instruction. can be used to place a constant into a register. For example, to
load 42 into register 3, write

lea R3,42 ; R3 := 42

This is a statement in assembly language, and it describes one instruc-
tion. This statement contains three parts:

• The operation is lea. This tells the computer what action to perform,
and "lea" says to put a value into a register. Later we will see why this
instruction is called "lea".

• The operands are R2,42

• Everything after the semicolon is a comment. This comment is a pro-
gramming language statement that describes what the instruction does:
it sets the variable R3 to 42.

The same instruction can be written in a longer form:

lea R3,42[R0] ; R3 := 42

This is the same as above, except [R0] is written after the number. You
can write the instruction either way; both are translated to exactly the same
machine language, and they execute exactly the same way. The significance
of [R0], as well as the reason this instruction is named lea, will be explained
later when we discuss arrays and pointers. The short form lea R3,42 is just

9



an abbreviation for the long form lea R3,42[R0]. You will see both forms in
the example programs.

The name lea is the operation, i.e. the name of the instruction. The
operandd field consists of two operands separated by a comma. The first
operand, R2, is called the destination; this is the register where the result
will be placed. The second operand is a constant 42 followed by [R0]. When
the computer executed this instruction, it simply places the constant into the
destination. In a higher level language, we could write R2 := 42.

Most instructions follow a similar pattern: the first operand is the destina-
tion where the result is placed, and the subsequent operands are the arguments
to the computation. This is the same convention used in assignment statements
in many programming languages: the registers in add R1,R2,R3 appear in the
same order as the variables in R1 := R2 + R3.

All arithmetic operations take place in the registers, and there is a separate
instruction for each operation. For example, the following instruction will add
the values in R8 and R1 and then put the result into R4:

add R4,R8,R1 ; R4 := R8 + R1

Notice that the operand field doesn’t use operators like := or +; instead
it just separates the registers with commas. The first operand (R4 in this
example) is the destination, which is where the result will be placed. The
last two operands (R8 and R1) are the values that will be added.

To perform a calculation, we need to get the data into registers (using
lea) and then perform the calculation (using arithmetic instructions). The
following program calculates 3 + 4 and puts the result into R2:

lea R5,3[R0] ; R5 := 3
lea R8,4[R0] ; R8 := 4
add R2,R5,R8 ; R2 := R5 + R8 = 3+4 = 7

It’s a good idea to use comments to explain the meaning of an instruction.
For now, comments like "R4 := R8 + R1" will be used to show what the in-
struction does. That’s useful while learning what the instructions do, but later
on we will use comments to give more meaningful information (for example,
what do the values in the registers mean, and why are we adding them?).

There are three more arithmetic instructions. These follow the same pat-
tern as add: in each case, the arithmetic is performed on the last two registers
and the result is placed in the destination (the first register):

add R4,R11,R0 ; R4 := R11 + R0
sub R5,R2,R13 ; R5 := R2 - R13
mul R2,R10,R7 ; R2 := R10 * R7
div R5,R6,R12 ; R5 := R6 / R12, R15 := R6 rem R12

10



The divide instruction is slightly different: it produces two results, the
quotient and the remainder. The quotient is placed in the destination, and
the remainder is automatically placed into R15, even though the instruction
doesn’t mention R15. If you write div R15,R1,R2, the quotient is placed in
R15 and the remainder is discarded.

Normally an arithmetic instruction will put a new value into the destina-
tion register, but the operand registers are left unchanged. However, what
happens if one of the operands is the same as the destination, for example
add R7,R7,R8?

An arithmetic instruction proceeds in three phases: (1) obtain the values
in the operand registers; (2) perform the arithmetic on those values; and (3)
put the result into the destination, discarding whatever value was previously
there. So consider this example:

lea R7,20[R0] ; R7 := 20
lea R8,30[R0] ; R8 := 30
add R7,R7,R8 ; R7 := R7 + R8

After the two lea instructions have executed, R7 contains 20 and R8 con-
tains 30. The add instruction does the following:

1. It fetches the values in R7 and R8, obtaining 20 and 30

2. It adds the values, obtaining the result 50

3. It puts the result 50 into the destination R7, discarding the previous
value.

The final result is that R7 contains 50.
Constant data can be specified using either decimal or hexadecimal nota-

tion.

• Decimal numbers are written as strings of digits, optionally preceded by
a minus sign: 3,-19, 42.

• Hexadecimal numbers are always written as four hex digits, and in as-
sembly language programs they are indicated by putting $ before the
number. Thus $00a5 and 0165 both represent the integer 165.

lea R1,13[R0] ; R1 = 13 (hex 000d)
lea R2,$002f[R0] ; R2 := 47 (hex 002f)
lea R3,$0012[R0] ; R3 := 18 (hex 0012)
lea R4,0012[R0] ; R4 := 12 (hex 000c)

11



The processor page shows numbers as hex without the leading $, but in an
assembly language program the $ is needed to avoid ambiguity.

Sigma uses := as the assignment operator; thus we write R7 := R7 + R8
(and we don’t write R7 = R7 + R8). This is because an assignment statement
is profoundly different from an equation, and mathematicians have long used
the = operator to indicate equations. It isn’t just an academic or theoreti-
cal point; there have been plenty of occasions where computer programmers
get confused between assignment and equality, and using the wrong operator
doesn’t help.

Why does assembly language use a notation like add R5,R2,R3 instead of
R5 := R2 + R3? In short, every instruction will use a similar notation: a
keyword for the operation, followed by the operands separated by commas.
This notation is also related closely to the way instructions are represented in
memory, which we’ll see later

An arithmetic instruction performs just one operation. Several instructions
are needed to evaluate a larger expression. In general, you’ll need a separate
instruction for every operator that appears in an expression.

Example: calculate 3 + 4 * 5 and put the result into R10. We have to
put the numbers into registers, using lea, and then perform the arithmetic. It
doesn’t matter which registers are used (as long as we avoid R0 and R15).

lea R1,3[R0] ; R1 := 3
lea R2,4[R0] ; R2 := 4
lea R3,5[R0] ; R3 := 5
mul R2,R2,R3 ; R2 := R2*R3 = 4*5
add R10,R1,R2 ; R10 := R1 + R2 = 3 + 4*5 = 23

This is nearly enough to constitute a complete program. Only one more
thing is needed: a way to terminate the program when it finishes. There is
a special instruction to do this: a trap instruction, where the first operand is
R0, will stop the program.

trap R0,R0,R0 ; halt

Here is a complete program named ConstArith:

; ConstArith: illustrate lea and arithmetic instructions
; This file is part of Sigma16

; Calculate 3 + 4 * 4 and put the result into R10
; Use lea to put a constant into a register
; Use mul and add to do arithmetic

lea R1,3[R0] ; R1 := 3
lea R2,4[R0] ; R2 := 4

12



lea R3,5[R0] ; R3 := 5
mul R2,R2,R3 ; R2 := R2*R3 = 4*5
add R10,R1,R2 ; R10 := R1 + R2 = 3 + 4*5 = 23
trap R0,R0,R0 ; halt

You can go to the Editor and type it in, but this program is part of the
collection of examples built in to Sigma16. Here’s how to run it:

• Go to the Examples page. Click Examples, then Core, then Small and
simple programs, then ConstArith. You should see the listing of the
program.

• Click Editor, and you should see the text of the program in the window.

• Go to the Assembler page. Click Assemble.

• Go to the Processor page. Click Boot, then Step repeatedly and watch
the effect of each instruction by observing how the registers and memory
are changed.

The Processor page shows numbers in hexadecimal. The mul instruction
puts decimal 20 into R2, and this is displayed as hex 0014 (because 1 * 16 +
4 = 20).

It’s a good idea to step through the program slowly, rather than running it
to completion at full speed. The emulator will show the next instruction to be
executed, highlighted in blue. Think about what the instruction should do; in
particular what changes to the registers will occur? Then click Step and check
to see if the right thing happened.

Generally you can use any register you like, and the choices of registers
in the previous examples are arbitrary. Registers R1 through R14 are all the
same. However, two of the registers are different:

• R0 contains the constant 0 and it will never change. Any time an in-
struction uses R0, the value it gets will be 0. It is legal for an instruction
to attempt to modify R0 (for example, add R0,R3,R4 is legal) but after
executing this instruction R0 still contains 0. The reason for this is that
we frequently need to have access to a register containing 0.

• R15 is used for two specific purposes. We have already seen the first: the
divide instruction places the remainder into R15. The second purpose is
that R15 contains the condition code, which is a word that contains
a number of bits that provide some information about an instruction.
For example, if an addition produces a result that is too large to fit
in a register, a special flag indicating this is set in R15. Many of the
instructions, including all the arithmetic instructions, change the value
of R15 as well as placing the result in the destination register. For this
reason, R15 cannot be used to hold a variable since its value would be
destroyed almost immediately.

13



To summarise, Registers R1 through R14 are all identical and can be used
for variables. R0 contains 0 and will never change. R15 changes frequently
and can be used to determine various error conditions and other information
about an instruction.

Here is another example:

• Suppose we have variables a, b, c, d

• Choose a register for each variable: R1=a, R2=b, R3=c, R4=d

• We wish to compute R5 = (a+b) * (c-d)

add R6,R1,R2 ; R6 := a + b
sub R7,R3,R4 ; R7 := c - d
mul R5,R6,R7 ; R5 := (a+b) * (c-d)

Summary.

• A lea instruction of the form lea d,const[R0] will put the constant into
Rd. It can also be written as lea d,const.

• The general form of an arithmetic instruction is op d,a,b. The meaning
is Rd := Ra op Rb, and the fields are:

op operation: add, sub, mul,div
d destination register: where the result goes
a first operand register
b second operand register

2.4 Keeping variables in memory

So far we have used registers in the register file to hold variables. However,
there are only 16 of these, and two have special purposes (R0 and R15). That
leaves only 14 registers, and most programs need more than 14 variables.

The computer contains another subsystem called the memory. This is
similar in some ways to the register file. The memory contains a sequence of
memory locations, each of which can hold a word. Each location is identifed
by an address, and the addresses count up from

1. We will use the notation mem[a] to denote the memory location

with address a.
The processor page shows two independent views into the memory; this is

convenient for looking at the machine language code in one view and the data
in the other view. Despite the two views, there is just one memory!

The register file and the memory serve different purposes:

14



• The register file is used to perform calculations. In computing something
like x := (2*a + 3*b) / (x-1), all the arithmetic must be done using the
register file. But there are only a few registers available.

• The memory is much larger: it contains 65,536 locations so it can hold
all the variables in a program. But the memory has a limitation: the
computer cannot do arithmetic directly on data in the memory.

Normally, a program keeps its variables in memory, so a variable name
refers to a word in memory. Actually, the variable name just stands for the
address of the location which contains the variable. This allows you to refer
to a variable by a name (x, sum, count) rather than an address (003c, 0104,
00d7).

Since we need a lot of variables, they need to be kept in memory. But since
we need to do arithmetic and arithmetic can be performed only on data in
registers, we adopt the following strategy:

• Keep variables permanently in memory

• When you need to do arithmetic, copy a variable from memory to a
register

• When finished, copy the result from a register back to memory

Two instructions are needed to do this:

• load copies a word from a memory location into a register. Suppose xyz
is a variable in memory; then to copy its value into R2 we could write
either load R2,xyz[R0] or load R2,xyz. Again, the [R0] is optional;
if you write the short form xyz the assembler will automatically expand
this to the full form xyz[R0].

• store copies a word from a register into a memory location. If R3 con-
tains the result of some calculations, and we want to put it back into
memory in a variable named result, we would write store R3,result[R0]

At this point we have enough instructions to write an assignment statement
in assembly language. Typically we will first write an algorithm using higher
level language notation, and then translate it into instructions.

Example: translate x := a+b+c into assembly language.
Solution:

load R1,a[R0] ; R1 := a
load R2,b[R0] ; R2 := b
add R3,R1,R2 ; R3 := a+b
load R4,c[R0] ; R4 := c
add R5,R3,R4 ; R5 := (a+b) + c
store R5,x[R0] ; x := a+b+c

15



Why does the computer have both registers and memory? After all, this
makes programming a little more complicated. You have to keep track of
which variables are currently in registers, and you have to use load and store
instructions to copy data between the registers and memory. Wouldn’t it be
easier just to get rid of the distinction between registers and memory, and do
all the arithmetic on memory?

Yes, this would be simpler, and there have actually been real computers
like that. However, this approach makes the computer slower. With modern
circuits, a computer without load and store instructions (where you do arith-
metic on memory locations) would run approximately 100 times slower. So
nearly all modern computers do arithmetic in registers, and use instructions
like load and store to copy data back and forth between registers and memory.

The variables used in a program need to be defined and given an initial
value. This is done with the data statement. The variable name comes first,
and it must start at the beginning of the line (no space before it). Then comes
the keyword data, followed by the initial value, which may be written in either
decimal or hexadecimal.

For example, to define variables x, y, z and give them initial values:

x data 34 ; x is a variable with initial value 34
y data 9 ; y is initially 9
z data 0 ; z is initially 0
abc data $02c6 ; specify initial value as hex

The data statements should come after all the instructions in the program.
This may look surprising: in some programming languages you have to declare
your variables at the beginning, before using them. There is a good reason
why we will put the instructions first, and the data statements after; but the
reason will come later.

Here is a simple example of a complete program that uses load, store, and
data statements:

; Program Add. See Sigma16/README.md in top folder
; A minimal program that adds two integer variables

; Execution starts at location 0, where the first instruction will be
; placed when the program is executed.

load R1,x[R0] ; R1 := x
load R2,y[R0] ; R2 := y
add R3,R1,R2 ; R3 := x + y
store R3,z[R0] ; z := x + y
trap R0,R0,R0 ; terminate

; Expected result: z = 37 (0025)

16



; Static variables are placed in memory after the program

x data 23
y data 14
z data 0

• Go to the Examples page. Click Core, then Small and Simple Programs,
then Add.

• Click Editor, and you should see the text of the program in the window.

• Go to the Assembler page. Click Assemble.

• Go to the Processor page. Click Boot, then Step repeatedly and watch
the effect of each instruction by observing how the registers and memory
are changed.

2.5 Assembly language

The programs we have seen so far are written in assembly language. The
machine itself executes programs in machine language, which is covered
later. Assembly language is translated to machine language by a program
called an assembler.

The purpose of assembly language is to give the programmer absolute con-
trol over the machine language program without having to remember lots of
numeric addresses and codes. Assembly language is readable for humans, while
machine language is executable by machines. For example, it is easier to re-
member the name "mul" for multiply than to remember the machine language
code (which happens to be 3). Similarly, it’s easier to remember the names of
variables (x, y, sum, total) than the numeric addresses of the memory locations
that hold these variables.

The syntax of assembly language is simple and rigid. Every statement must
fit on one line of source code; you cannot have a statement that spans several
lines, and you cannot have several statements on one line.

Sigma16 assembly language uses a small set of characters. Any charac-
ter not on this list will generate an error message. A Sigma16 program can
manipulate any 16-bit character, but the source assembly language code is
restricted to this source character set. There are many characters that look
similar but are actually distinct. For example, the minus sign, the hyphen, the
en-dash, and the em-dash all look similar – you have to look really closely to
see the difference – but Sigma16 assembly language uses the minus sign, and
the hyphens and dashes won’t work.

These are the legal characters in an assembly language program:

• letters: _abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU-
VWXYZ

17



• digits: 0123456789

• separators: (space) (tab) ,;

• quotes: " ’

• punctuation: ".$[]()+-*

• other: ?Â¬Â£‘<=>!%ˆ&{}#~@:|/\’

Word processors often substitute characters. For example, when you type
a minus sign in a paragraph of English text, word processors may replace the
minus sign with a hyphen or dash, which is correct for typeset English but
incorrect for assembly language. The Sigma16 editor will insert the correct
characters, as will plain text editors.

Each statement has a rigid format that consists of up to four fields. The
fields must be separated by one or more spaces, and a field cannot contain a
space. Every field is optional, but if a field is missing then the following fields
must also be missing, except for an optional comment. The fields are:

• label (optional) – If present, the label must begin in the first character
of the line. If a line starts with a space, then there is no label field. A
label has the same syntax as names or identifiers in many languages: it
may contain letters, digits, underscores, and must begin with a letter.
Both upper and lower case letters are allowed, and they syntax is case
sensitive (Loop and LOOP and loop are three different labels).

• mnemonic – This is the name of the operation: load, lea, add, sub, etc.
The mnemonic must be preceded by white space, and it must be the
name of a valid instruction or assembler directive.

• operands field – the operands required by the type of statement. There
are several formats possible for the operands field, depending on the
instruction; these are detailed later. For example, for the add instruction
the operand field must consist of three registers, separated by commas
(e.g. R1,R2,R3). Spaces are not allowed in the operands field: R1,R2,R3
is fine but R1, R2, R3 is an error.

• comments – anything that follows the operands field, or anything that
appears after a semicolon, is a comment. The semicolon is not required
if the mnemonic and operands fields are present, but it is good practice
to include it.

Here are some syntactically valid statements:

loop load R1,count[R0] ; R1 = count
add R1,R1,R2 ; R1 = R1 + 1

18



Each of the following statements is wrong!

add R2, R8, R9 ; spaces in the operand field
loop1 store x[R0],R5 ; wrong order: should be R5,x[R0]

addemup ; invalid mnemonic
loop2 load R1,x[R0] ; Space before the label

If you forget some detail, look at one of the example programs.
When the assembler is translating a program, it begins by looking at the

spaces in order to split each statement into the four fields. This happens
before it looks at the operation and operands. The assembly listing uses colors
to indicate the different fields. If you get a syntax error message, the first thing
to check is that the fields are what you intended. For example if you meant to
say

add R1,R2,R3 ; x := a + b

but you have a spurious space, like this

add R1, R2,R3 ; x := a + b

the assembler will decide that the mnemonic is add, the operands field is
"R1," and all the rest - "R2,R3 ; x := a + b" – is a comment, and the colors
of the text in the assembly listing will show this clearly.

In assembly language, you can write constants in either decimal or hex-
adecimal.

• decimal: 50

• hexadecimal: $003b

Examples:

lea R1,40[R0] ; R1 = 40
lea R2,$ffff[R0] ; R2 = -1

x data 25
y data $2c9e

There are two instruction formats, which differ in the form of the operands:

• RRR instructions have an operand field containing three registers sepa-
rated by commas. Example: add R8,R13,R0.

• RX instructions have an operand field that specifies a register and an
address. The address is a name or constant, optionally followed by a
register. Examples: load R12,array[R6]$ and *lea R5,23.

19



It isn’t enough just to get the assembler to accept your program without
error messages. Your program should be clear and easy to read. This requires
good style. Good style saves time writing the program and getting it to work
A sloppy program looks unprofessional. Here are a few tips.

Write good comments. You should include good comments in all pro-
grams, regardless of language. Comments are especially important in machine
language, because the code tends to need more explanation. At the beginning
of the program, use comments to give the name of the program and to say
what it does. Use full line comments to say in general what’s going on, and
put a comment on every instruction to explain what it’s doing.

Indent your code consistently. Each field should be lined up vertically,
like this:

load R1,three[R0] ; R1 = 3
load R2,x[R0] ; R2 = x
mul R3,R1,R2 ; R3 = 3*x
store R3,y[R0] ; y = 3*x
trap R0,R0,R0 ; stop the program

Not like this:

load R1,three[R0] ; R1 = 3
load R2,x[R0] ; R2 = x

mul R3,R1,R2 ; R3 = 3*x
store R3,y[R0] ; y = 3*x

trap R0,R0,R0 ; stop the program

The exact number of spaces each field is indented isn’t important; what’s
important is to make the program neat and readable.

Spaces, not tabs! To indent your code, always use spaces – avoid tabs!
In general, never use tabs except in the (rare) cases they are actually required.
The tab character was introduced long ago into computer character sets to try
to mimic the tab key on old mechanical typewriters. Unfortunately, software
does not handle tab characters consistently. If you use tabs, your program can
look good in one application and like a mess in another. It’s easy to indent
with spaces, and it works everywhere.

2.6 Editing files

Whatever method you use to edit your programs, be sure to save your work
to a file from time to time. If you don’t do that, sooner or later the system
will crash and you’ll lose your data.

A module is a section of a program; it may be the complete program or
just a part of it. A module may be saved in a file or it may simply be text in
the editor buffer. A program may consist of just one module, or it can be split
between several files.

20



The Editor page contains a text area called the editor buffer. When you
launch Sigma16, there is one module whose text is empty and displayed in
the editor buffer. You can type a program (to be precise, a module) into the
editor buffer. When you switch to the Assembler page, the Assemble button
will translate the text in the editor buffer to machine language, which you can
execute on the Processor page.

After entering a program in the editor buffer, you should save it to a file.
Click Save in downloads and the text in the editor buffer will be written to
a file on your computer. Depending on how the system is configured, there
may be a dialogue box asking you for a file name, or a generic default file name
may be used (for example, "S16DownloadFile (2).txt" or something similar).
This file will be saved in the default Downloads directory as configured in your
browser.

The reason there is limited control over the name of the saved file, and the
directory where it is placed, is that web browsers enforce strict limitations on
the ability of applications to access your file system. That’s a good feature
of browsers – you don’t want a malicious web page to start reading, deleting,
or corrupting your files – but it does make it inconvenient to save your edited
assembly programs.

Another approach is to use a separate text editor, and to copy/paste text
between the external editor and the Editor page on Sigma16.

To create a new module without destroying the existing one, click New in
the editor page. This will make a new module with empty text and display
that in the editor buffer, so any text you had there will disappear. However,
that text isn’t lost, it’s just hidden, and to get it back you just need to select
the previous module.

The Modules page shows a list of all the modules and allows you to
select one to work on. The modules are shown in small sections separated
by horizontal lines. The modules are numbered starting from 0, so if there
are n modules their numbers go from 0 to n-1. For each module, the module
number is shown, followed by some buttons to operate on that module, and
some information about it. The first few lines of the module are shown. If
you follow good programming style, where the first rew lines of each module
identify the program, you’ll be able to see at a glance what each module is
without visiting it in the editor.

Several buttons appear for each module in the list. At any time, one of the
modules is selected. Click the Select button for any module to select that
one. The selected module number is highlighted in red, and when you go to
the Editor page the text of the selected module appears in the editor buffer.
This means you can have several programs open at the same time, and just
switch from one to the other using the Select buttons in the Modules page.

You can also get rid of a module by clicking its Close button. This will
delete its text, so it may be a good idea to select it and download it in the
Editor before closing it.

21



So far we have just created new modules by clicking New (in either the
Editor page or the Modules page). You can also read files on your computer
into Sigma16. Click Choose files and a dialogue box will pop up. You can
select one or more files, and these will now appear in the list of modules.

If a module was created by reading it from a file, its entry in the list contains
an extra Refresh button. Clicking this will reread the file and you won’t need
to use the file chooser dialogue box again.

Common workflows:

• Just type your program into the editor buffer, and download it frequently.

• Use an external editor to enter your program. After editing it, go to the
Editor page and click Clear, then copy the program from your external
editor and paste it into the editor buffer. If you do this, make sure that
your external text editor doesn’t change your characters. For example,
word processors often change the minus character (-) into an en-dash.
There are four different characters that look similar to a minus sign (mi-
nus, hyphen, en-dash, em-dash) and the assembly language only accepts
the minus sign. If you get bad characters, the assembler will give an
error message.

• Use an external editor and save the file. Use copy and paste to transfer
text between the external editor and the Sigma16 Editor page.

2.7 Jumps and conditionals

Conditionals allow a program to decide which statements to execute based on
Boolean expressions. One example is the if-then statement, for example:

if x<y
then statement 1

statement 2

A related form is the if-then-else statement:

if x<y
then statement 1
else statement 2

statement 3

Many high level control constructs can be translated into code that contains
just one form of conditional, which uses a Boolean expression bexp to decide
whether to jump to someLabel, or not to jump:

if bexp then goto someLabel

The commonest case is where bexp is a comparision between two integers:

22



if x < y then goto someLabel

Any relational operation can be used; it isn’t limited to less-than. Such
conditionals are implemented in assembly language in two steps. First, a
comparison instruction is used to produce a Boolean result, which is placed in
the condition code (which is in R15). Second, a conditional jump instruction
will either jump or not jump, depending on the condition code. This allows a
choice of what instruction to execute next.

The cmp instruction compares the integers in two registers, and it sets
R15 to the result of the comparison. R15 is a special register because several
instructions, including cmp, use it automatically without actually specifying
R15 in the instruction. Reflecting its special status, R15 also has a name: it’s
called the condition code.

After setting the condition code with cmp, the program executes a con-
ditional jump. These instructions have the form jumpXX, where XX is a
relation, such as lt, eq, and so on:

jumplt someLabel[R0] ; if < then goto someLabel
jumple someLabel[R0] ; if <= then goto someLabel
jumpeq someLabel[R0] ; if = then goto someLabel
jumpne someLabel[R0] ; if != then goto someLabel
jumpge someLabel[R0] ; if >= then goto someLabel
jumpgt someLabel[R0] ; if > then goto someLabel

These conditional jumps treat the contents of the registers as integers rep-
resented in two’s complement notation. This means, for example, that $ffff is
less than 0, because $ffff represents -1. There are actually several more condi-
tional jumps that you can use for comparing natural numbers (binary), and a
few other things as well.

Usually a compare instruction is used to set the condition code, and it’s
followed by a conditional jump. It is also possible to save the result of a
comparison in a Boolean variable, to perform logic on Boolean varaibles, and
to use them to control conditional jumps. This topic will be discussed later.

The address in a jump instruction – the place to jump to – is normally
specified as a label which is defined in the label field of some instruction. You
can place a label in the same line as the instruction, or it can be on a line
with nothing else, in which case the label refers to the next instruction. In the
following code, label1 is the address of the add instruction and label 2 is the
address of the sub instruction.

label1 add R2,R4,R13
label2

sub R15,R0,R1

If-then constructs are translated into assembly language following two sim-
ilar fixed patterns. Suppose Bexp is a Boolean in any register Rd

23



if bexp
then statement 1

statement 2

This is translated according to the following pattern:

if !bexp then goto L1
statement 1

L1:
statement 2

Here is an example:

a := 93
x := 35
y := 71
if y > x then a := 59
b := 104

The corresponding assembly language is:

; a := 93
lea R1,93[R0] ; R1 := 93
store R1,a[R0] ; a := 93

; x := 35
lea R1,35[R0] ; R1 := 35
store R1,x[R0] ; x := 35

; y := 71
lea R1,71[R0] ; R1 := 71
store R1,x[R0] ; x := 71

; if y > x
load R1,y[R0] ; R1 := y
load R2,x[R0] ; R2 := x
cmp R1,R2 ; compare y with x
jumple R3,skip[R0] ; if not y > x then goto skip

; then a := 59
lea R1,59[R0] ; R1 := 59
store R1,a[R0] ; a := 59

; b := 104
skip lea R1,104[R0] ; R1 := 104

store R1,b[R0] ; b := 104

24



Notice the use of jumple: if the Boolean expression (y>x) is False we want
to skip over the "then" part, so we want to jump if y <= x (hence jumple).

An if-then-else statement has a similar compilation pattern, but this time
there are two separate parts: the "then-part" and the "else-part". Depending
on the value of the Boolean expression, one of those parts should be executed
and the other should be skipped over.

For if-then-else, and many other control constructs, we need an uncondi-
tional jump which will always go to the specified address, and which doesn’t
use a Boolean.

jump somewhere[R0] ; go to somewhere

The general form of an if-then-else is

if x < y
then S1
else S2

S3

The general if-then-else construct can be translated to use just goto and
conditional goto:

if x >= y then goto L1
S1
goto L2

L1: S2
L2: S3

2.8 Loops

Loops are implemented using compilation patterns based on comparisons and
jumps. The fundamental form is the while loop.

while Bexp do S1
S2

The compilation pattern is:

L1 if not Bexp then goto L2
S2
goto L1

L2

Occasionally you may encounter an infinite loop, which is sometimes ex-
pressed as a while loop:

25



while true do S1

This doesn’t need a Boolean expression; it is simply compiled into:

loop
instructions for S1
jump loop[R0]

Infinite loops are rather rare, or at least they should be. On occasion they
are exactly what is wanted. For example, operating systems contain a loop
that looks for something useful to do, and then does it, and this should be an
infinite loop.

However, there is a common but poor programming style that uses infinite
loops with random break or goto statements to get out of the loop. This may
be appropriate on occasion but generally it is bad style.

So far we have seen several compilation patterns:

• if-then

• if-then-else

• while

Every high level programming construct has a compilation pattern, and
they are mostly built using comparisons and jumps. In principle, these patterns
are straightforward to use. However, there are two issues that require a little
care: uniqueness of labels and nested statements.

Labels must be unique: the same one cannot be used twice in the same
program, and if it is, the assembler will give an error message. This means
that you cannot follow the compilation patterns blindly. If you use "loop" as
the label for a while loop, as in the pattern above, you need a different label
for your next while loop.

The best approach here is not to use labels like loop, loop1, loop2. It’s far
better to think about the purpose of the construct in your program and to
use a label that reflects this purpose.

Another complication is that most programs contain nested statements.
These are statements that contain smaller statements, and the containment
may go several levels deep.

if b1
then S1

if b2 then S2 else S3
S4

else S5;
while b3 do S6

S7

26



There is an important principle to follow here: every time a statement
appears in a compilation pattern (we have been calling them S1, S2, S3, etc.),
it should be translated as a block.

A block is a sequence of instructions which always begins execution at the
first instruction, and always finishes at the end. You never jump into the
middle of it, and it never jumps out of the middle to some other place.

Every statement should be compiled into a block of code. This block may
contain internal structure — it may contain several smaller blocks — but to
execute it you should always begin at the beginning and it should always finish
at the end.

In programming language theory, programming with blocks is often con-
sidered to be good practice or good style. But it is more than just an issue of
style. If you always treat the statements inside compilation patterns as blocks,
the patterns will "just work", no matter how deeply nested they are. If you
violate the block structure, you will find it difficult to get the program to work.

2.9 Machine language

The actual bits representing an instruction (written in hex) (e.g 0d69) are
machine language. The actual hardware runs the machine language —
it’s just looking at the numbers. The text notation with names – e.g. add
R13,R6,R9 – is called assembly language. Assembly language is for humans to
read and write; machine language is for machines to execute. Both languages
specify the program in complete detail, down to the last bit

As a program is running, the memory contains all your program’s data:
the variables, data structures, arrays, lists, etc. The memory also contains
the machine language program itself. The program is stored inside the
computer’s main memory, along with the data. This concept is called the
stored program computer.

There is an alternative approach: a computer can be designed to have
one memory to hold the data, and a completely separate memory to hold the
program. This approach is often used for special-purpose computers (primarily
micro-controllers), but experience has shown this to be inferior for general
purpose computers.

Sigma16 has several different kinds of instruction. These are called in-
struction formats. All the instructions with the same format have similar
representations in machine language. The Sigma16 Core has two instruction
formats:

• RRR instructions use the registers

• RX instructions use the memory

The machine language program is in the memory. Therefore we need to
represent each instruction as a word that can be stored in memory. An in-

27



struction format is a systematic way to represent an instruction using one or
more words (a word is a string of bits).

• An RRR instruction is represented in one word

• An RX instruction is represented in two words.

Fields of an instruction word
An instruction word has 16 bits. There are four fields, each 4 bits. We

write the value in a field using hexadecimal. hex digits: 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, a, b, c, d, e, f. These correspond to 0, 1, . . . , 15

The names of the fields are:

• op – holds the operation code

• d – usually holds the destination register

• a – usually holds the first source operand register

• b – usually holds the second source operand register

Representing RRR instructions
Every RRR instruction consists of

• An operation (e.g. add)

• Three register operands: a destination and two operands

• The instruction performs the operation on the operands and puts the
result in the destination

Example: add R3,R12,R5.
We need to specify which RRR instruction this is. Is it add? sub? mul?

another? This is done with an operation code — a number that says what the
operation is. There are about a dozen RRR instructions, so a 4-bit operation
code suffices.

We also need to specify three registers: destination and two source operands.
There are 16 registers, so a particular one can be specified by 4 bits. Total
requirements: 4 fields, each 4 bits — total 16 bits. An RRR instruction exactly
fills one word.

All RRR instructions have the same form, just the operation differs

• add R2,R2,R5 ; R2 = R2 + R5

• sub R3,R1,R3 ; R3 = R1 - R3

• mul R8,R6,R7 ; R8 = R6 * R7

28



In add R2,R5,R9 we call R5 the first operand, R9 the second operand,
and R2 the destination. It’s ok to use the same register as an operand and
destination! Later we’ll see some more RRR instructions, obut they all have
the same form as these do.

Here are the RRR operation codes:
mnemonic opcode ———- ——– add 0 sub 1 mul 2 div 3 trap b
Don’t memorise this table! You just need to understand how it’s used.
Example of RRR:

add R13,R6,R9

• The opcode (operation code) is 0

• Destination register is 13 (hex d)

• Source operand registers are 6 and 9 (hex 6 and 9)

• So the instruction is 0d69

Representing RX instructions
Every RX instruction contains two operands:

• A register

• An address or constant

We have seen several so far:

• lea R5,19[R0] ; R5 = 19

• load R1,x[R0] ; R1 = x

• store R3,z[R0] ; z = R3

• jump finished[R0] ; goto finished

• The first operand (e.g. R1 here) is called the destination register, just
like for RRR instructions

• The second operand x[R0] specifies a memory address

• Each variable is kept in memory at a specific location which is identified
by its address

The memory operand has two parts:

• The variable x is a name for the address where x is kept — called the
displacement.

29



• The R0 part is just a register, called the index register. This can be any
register, e.g. xyz[R5]. In the special case where the index register is R0,
you can write it in assembly language as either xyz or xyz[R0]. However,
the machine language representation is the same, and it always gives the
index register explicitly.

Consider

load R1,x[R0]

There are two words in the machine language code. The first word has 4
fields: op, d, a, b, where

• op contains f for every RX instruction

• d contains the register operand (in the example, 1)

• a contains the index register (in the example, 0)

• b contains a code indicating which RX instruction this is (1 means load)

The second word contains the displacement. In the example, this is the
address of x. Suppose x has memory address 0008. Then the machine code for
load R1,x[R0] is:

f101
0008

Operation codes for RX instructions
Recall, for RRR the op field contains a number saying which RRR instruc-

tion it is. For RX, the op field always contains f. So how does the machine
know which RX instruction it is? Answer: there is a secondary code in the b
field.

mnemonic b field
lea 0
load 1
store 2

2.10 Pseudoinstructions

We have seen conditional jump instructions like jumplt loop. Technically,
jumplt, jumpeq and the rest are called "pseudoinstructions". They are just
a convenient assembly language notations to describe the actual underlying
machine language instructions. All conditional jumps are expressed in machine
language using just two real instructions: jumpc0 and jumpc1:

30



jumpc0 Rd,disp[Ra]
jumpc1 Rd,disp[Ra]

The details of how jumpc0 and jumpc1 work will be discussed in the section
on the Standard architecture. Here is a list of the pseudoinstructions for
conditional jumps after an integer comparison:

jumplt someLabel[R0] ; if < then goto someLabel
jumple someLabel[R0] ; if <= then goto someLabel
jumpeq someLabel[R0] ; if = then goto someLabel
jumpne someLabel[R0] ; if != then goto someLabel
jumpge someLabel[R0] ; if >= then goto someLabel
jumpgt someLabel[R0] ; if > then goto someLabel

2.11 A strange program

Consider “Program Strange” below. This program doesn’t compute anything
particularly useful. It’s rather strange and not a model for good programming
style, but it illustrates an extremely important concept, which is discussed
below.

You can find the program on the Examples page, in the Core section, or
you can copy it below and paste it into the Editor page. Run the program with
different initial values of a variable y, as described below. For each value of
y, first try executing the program manually, with paper and pencil, and then
run it on the emulator to check whether your execution was correct. Give the
final values of the registers, and think about what is going on as the program
runs. For each run, assume that all the registers contain 0 after the program
is booted, before it begins execution.

1. Run the program in its original form, with y data 0

2. Change the last line to y data 1 and run it again

3. Now use y data 256

4. y data 8192

5. y data -5424

; Strange: A Sigma16 program that is a bit strange
load R1,y[R0]
load R2,x[R0]
add R2,R2,R1
store R2,x[R0]
lea R3,3[R0]
lea R4,4[R0]

31



x add R5,R3,R3
add R0,R0,R7
trap R0,R0,R0

y data 0

Solution – it’s best to try answering the questions on your own first, and
then to check by running the program on the emulator, before reading the
solution!

The program loads an instruction into a register, does arithmetic on it
by adding y to it, and stores the result back into memory. This phenomenon
is called self-modifying code, and it exploits the fact that instructions and
data are held in the same memory (this is the stored program computer
concept). The original instruction is add R5,R3,R3, and its machine lan-
guage code is 0533.

1. When y=0, the final values are: R1=0, R2=0533, R3=3, R4=4, R5=6.
The only notable points are that the store instruction doesn’t actually
change the value of the word in memory (it was 0533 and 0533 is being
stored there), and the last add instruction doesn’t change the value in
R0 because R0 can never change; it is always 0. (Of course if R7=0 then
the result of the addition is 0 anyway.)

2. When y=1, the final values are: R1=1, R2=0534, R3=3, R4=4, R5=7.
Note that R5 is not 3+3=6. When y=1 is added to the instruction, the
result is 0534 which means add R5,R3,R4, so instead of adding R3+R3
it adds R3+R4.

3. When y=256, the final values are: R1=256=0100, R2=0633, R3=3,
R4=4, R5=0, R6=6. The decimal number 256 is 0100 in hexadecimal.
When this is added to the instruction, the result is 0633, which means
add R6,R3,R3 so R3+R3 is loaded into R6, not into R5.

4. When y=8192, the final values are: R1=4096=2000, R2=2533, R3=3,
R4=4, R5=9. The decimal number 8192 is 2000 in hexadecimal, and
when this is added to the instruction the result is 2533, which means
mul R5,R3,R3. It’s no longer an add instruction, it’s a multiply
instruction that calculates R5 := R3*R3 = 9.

5. When y=-5424 the program goes into an infinite loop. R1=ead0 (the
hexadecimal representation of -5424, R2=f003, R3=3, and R4=4. What
started out as the add instruction at x has been transformed into jump
7[R0], comprising the word at x (f003) and the following word (which is
0007). This jump instruction goes back to the first lea instruction, and
the program runs for ever (lea, lea, jump).

There is a lot to say about the phenomenon of self-modifying code.

32



This program shows clearly that a computer does not execute assembly
language; it executes machine language. Try running it on the Sigma16 ap-
plication (single step each instruction). You’ll see that the assembly language
statement add R5,R3,R3 is highlighted in red, but that is just the GUI trying
to be helpful. What’s important is that the machine language instruction is
fetched from memory and loaded into ir (the instruction register), and that is
not 0533. The machine decodes the contents of ir and does whatever that says
to do; it isn’t aware of the assembly language statement. Indeed, a machine
doesn’t even understand the concept of assembly language — everything is
just bits!

To follow exactly what is happening in the emulator, it’s important to
look at the pc and ir registers. These reflect what the machine is doing. The
assembly language does not.

What is self-modifying code good for? The answer lies in the early history of
electronic computers. Early computers (late 1940s and early 1950s) did not use
an effective address (i.e. displacement + index) like Sigma16; the instructions
simply specified the absolute memory address of an operand. This is ok for
simple variables, but how could they process arrays?

The solution was to use self modifying code. In a loop that traverses an
array, there would be a load instruction using address 0. In the body of the
loop, there would be instructions to calculate the address of x[i] by loading
the address of x and adding i; this is then stored into the address field of the
load instruction. That instruction is then executed, obtaining the value of x[i].
This technique became obsolete in the early 1950s with the invention of index
registers and effective addresses.

The pioneers of computers considered the concept of the stored program
computer (i.e. the program and data are in the same memory) to be fun-
damental and essential. One of the most important reasons was that it made
arrays possible. Now we consider the stored program concept to be fundamen-
tal for different reasons.

Self modifying code is tricky, and difficult to debug. It makes programs hard
to read: you can’t rely on what the program says, but on what its instructions
will become in the future. For these reasonas, self modifying code is now
considered to be bad programming practice.

If a program modifies itself, you can’t have one copy of the program in
memory and allow it to be shared by several users. For example, it’s common
now to have a web browser open with several tabs. Each tab is served by an
independent process (a separate running instance of a program that updates
the window showing the web page). If you have 5 tabs open, there are 5
processes, each running the same machine language code, and there’s only one
copy of that in memory. This wouldn’t work if the program modified itself!

Self modifying code leads to security holes: if a hacker has the ability to
change your machine language code in memory, they could make your own
program act against you.

33



Modern computers use a technique called segmentation that prevents a
program from modifying itself. This leads to increased reliability and security.

Some computers have a facility that allows you to gain the power of self
modifying code without actually modifying the code in memory. The idea is to
have an instruction execute R1,x[R0] which calculates the logical or of the
two operands and then executes the result; x is the address of an instruction
and R1 contains the modification to it. The modified instruction is executed,
but there is no change to the machine code in memory. This idea was used in
the IBM 360 and its successors. However, as the design of effective addresses
has become more sophisticated, the execute instruction is rarely needed, and
most modern computers don’t provide it.

2.12 Breakpoints

When you are testing or debugging a program, you may need to execute many
instructions before reaching the point you’re interested in. Some programs ex-
ecute thousands of instructions just to initialize. It’s infeasible to step through
all those instructions, yet if you just run at full speed you won’t be able to see
what’s happening in the section you are working on.

The solution is to run the program at full speed but to force it to stop
when it reaches a specific instruction. This is called a breakpoint. When
the program stops at the breakpoint, you can examine the registers and step
through instructions from that point. At any time you can click Run and full
speed execution resumes, until either another breakpoint is encountered or the
program terminates.

Both a breakpoint and a halt instruction will stop execution of the program.
The difference is that after a breakpoint you can click Step or Run to continue,
but after halt the program cannot execute any more instructions until you boot
the processor again.

There are two ways to set a breakpoint:

• Trap break : Insert an instruction into the program that breaks execution
at that point.

• External break : Define a breakpoint in the user interface, without mod-
ifying the program.

Both forms are useful. Most of the time, while debugging a program, a trap
break is easier and more convenient. However, if you don’t want to modify the
program or reassemble it, or if you realise that you need a breakpoint after
execution has already started, then an external break is better.

2.12.1 Trap break

A trap break is a trap instruction whose first operand register contains the
value 4. The other operand registers are ignored. When this instruction exe-
cuted, the emulator will stop execution, and you can resume execution later.

34



Suppose you want to check what the load instruction is doing in this code:

...
add R1,R2,R3
load R4,x[R1]
...

Insert a breakpoint just before the instruction you want to examine. The
breakpoint requires two instructions. The first instruction loads the break
code into some register (say R9 but it doesn’t matter which), and the second
instruction is a trap which actually performs the break. The first operand
is the register that contains the break code, and the other two operands are
ignored, so we can just use R0.

...
add R1,R2,R3
lea R9,4 ; R9 := trap break code
trap R9,R0,R0 ; breakpoint
load R4,x[R1]
...

Now you can run the program at full speed, but when it executes the
trap instruction, the emulator will stop. Since the trap instruction has just
executed, it will be highlighted in red, and the instruction you’re interested in
– the load – will be highlighted in blue. You can single step for a while, and
click Run again at any time to resume full speed execution.

A common technique is to put a trap break at the beginning of a loop. By
clicking Run repeatedly, you can step through the loop iterations.

For an example of a long running program with a trap break, see Examples
/ Core / Testing / Looper.

2.12.2 External break

An external break tells the emulator to perform a breakpoint without modify-
ing the program. Use these steps to set an external break:

1. Find the address of the instruction to stop at: look at the assembly
listing, find the instruction, and the listing gives its address.

2. Go to the processor page, click Boot and then click Breakpoint.

3. A small window will appear; type in the breakpoint address. It must
be a hexadecimal address in assembly language format: it must begin
with a $ and then contain four hex digits. No other characters may be
present, not even white space.

35



4. Click Refresh. This parses the address you entered and remembers it.
(If you change the address in the window, click Refresh again.)

5. Click Enable. This turns on the breakpoint.

6. Click CLose. The breakpoint popup window will disappear so you can
see the Processor again.

Now click Run and the program will execute at full speed. When the pc
register is equal to the breakpoint address, the emulator will stop. Then you
can Step or Run to continue execution.

As long as the breakpoint is enabled, execution will stop every time that
location is encountered. To prevent this, open the breakpoint popup again and
click Disable.

2.13 Summary of core instruction formats

2.13.1 RRR format

RRR instructions are represented in one word comprising four 4-bit fields.
Each field contains 4 bits representing a binary number between 0 and 15.

op d a b

• op (bits 15 to 12) is the operation code, usually called opcode. This
determines the operation to be performed. If the opcode is between
0 and 12 it specifies an RRR instruction. An opcode greater than 12
indicates an expanding opcode: the instruction is not RRR but one of
the other formats, and it has a secondary opcode that specifies precisely
which instruction it is. This is explained in the sections on RX and EXP
formats.

• d (bits 11 to 8) is the destination register ; the register where (in most
cases) the result will be loaded.

• a (bits 7 to 4) is the register containing the first operand.

• b (bits 3 to 0) is the register containing the second operand.

In most cases, an RRR instruction takes two operands in registers specified
by the a and b fields and produces a result which is loaded into the register
specified by the d field. A typical example of an RRR instruction is add
R4,R9,R2, which adds the contents of registers R9 and R2, and loads the
result into R4. It’s equivalent to R4 := R9 + R2. The opcode for add is 0, so
the machinen language code for this instruction is 0492.

36



2.13.2 RX format

RX instructions specify a memory location as well as a register operand. The
machine language representation is two words:

Here is RX
op d a b

The RX instruction format is used for instructions that use a memory
address, which is specified by an index register and a displacement. The name
of the format describes briefly the two operands: a register (R) and an indexed
memory address (X).

An RX instruction contains two operands: one is a memory address, and
the other is a register. Typical RX instructions are loads, stores, and jumps.
The instruction consists of two consecutive words. The first has the same
format as an RRR instruction, with four fields: op, d, sa, sb. The second word
is a single 16-bit binary number, and is called the displacement.

An RX instruction is represented by two words, with the following fields:
op=15, b contains the secondary opcode which specifies which RX instruction
it is, d is the destination, a is the index register, and the second word is a 16
bit constant called the displacement (often written disp for short).

• op field (bits 0-3 of ir) is f for all RX instructions

• d field (bits 4-7 of ir) has several uses

• a field (bits 8-11 of ir) is index register for effective address

• b field (bits 12-15 of ir) is secondary opcode

• disp (displacement) is the second word of the instruction

• ea (effective address) = displacement + r[a]

The memory address is specified in two parts: an index register and the
displacement. The index register is specified in the sa field. In assembly
language, the notation used is number[reg], where the number is the value of
the displacement, and the reg is the index register. Thus $20b3[R2] means the
address has displacement $20b3 and the index register is R2.

When the machine executes an RX instruction, it begins by calculating the
effective address. This is abbreviated "ea", and its value is the sum of the
displacement and the contents of the index register.

RX instructions are represented in two words, and they use an "expanding
opcode". That is, the op field of the first word of the instruction contains the
constant f (the bits 1111) for every RX instruction, and the sb field is used to
hold a secondary opcode indicating which RX instruction it is.

The register operand is specified in the d field. For several RX instructions,
this is indeed the destination of the instruction: for example, load places data

37



into Rd. However, a few RX instructions use the d field differently (see, for
example, the conditional jump instructions).

The memory address is specified using the sa field and the displacement,
which is the entire second word of the instruction.

2.14 Summary of core instructions

The following table summarises the instructions in the Core subset of Sigma16.
The columns are:

• Mnemonic. The assembly language name of the instruction

• ISA. The Instruction Set Architecture subset that contains the instruc-
tion; for this table all the instructions are Core.

• P. * indicates that the instruction is privileged, blank indicates that it
is not. All of the Core instructions are unprivileged. For the meaning of
"privileged", see the System section.

• Fmt. The instruction format. There are two Core instruction formats:
RRR (instruction has three operand fields, each a register) and RX (in-
struction has a register operand and an X operand consisting of a dis-
placement constant and an index register).

• Args. The assembly language argument format. Usually this is the same
as Fmt. However, some instructions don’t use all the fields, and the
assembly language statement omits the irrelevant field (e.g. cmp is RRR
format but the assembly language statement omits the d field, which is
ignored).

• Code.

• Effect. A statement in an imperative programming language which de-
scribes what the instruction does.

Pseudoinstructions for comparisons

• jumplt jump if <

• jumple jump if <=

• jumpeq jump if =

• jumpne jump if !=

• jumpge jump if >-

• jumpgt jump if >

Assembly directives

• data

38



3 Standard architecture tutorials
The standard architecture provides additional registers and instructions to
support systems programming, as well as instructions that simplify functions
and procedures and logic calculations.

3.1 Logic

The pseudoinstruction andw R1,R2,R3 calculates the logical and the operands
R2 and R3, and places the result in the destination register R1. This is a
"bitwise" operation: bit i of the result is the logical and of bit i of each
operand. Similarly, there is orw to calculate the logical or of two words, and
xorw for exclusive or. To invert all the bits in a word, use invw.

lea R3,$f0f0[R0] ; R3 = f0f0
lea R4,$ff00[R0] ; R4 = ff00
invw R6,R3 ; R6 := inv R3 = 0f0f
andw R7,R3,R4 ; R7 := R3 and R4 = f000
orw R8,R3,R4 ; R8 := R3 or R4 = fff0
xorw R9,R3,R4 ; R9 := R7 xor R8 = 0ff0

These are all pseudoinstructions: there is a single machine language in-
struction logicw that can calculate all possible boolean functions of up to 2
operands. These pseudoinstructions generate logicw instruction.

See Examples/Standard/Logic.asm.txt

3.2 Shifting

There are two shift instructions, which shift the word in Re by f bits (to left
or right) and place the result into Rd. These are logical shifts: the bits that
are shifted out are discarded, and bits shifted into the word are always 0.

shiftl Rd,Re,f ; Rd := Re shifted left by f bits
shiftr Rd,Re,f ; Rd := Re shifted right by f bits

Here are some examples; the comments show the expected result in both
hexadecimal and as bits.

lea R1,2[R0] ; R2 = 0002 0000 0000 0000 0010
shiftl R5,R1,4 ; R5 = 0020 0000 0000 0010 0000
shiftl R6,R1,13 ; R6 = 4000 0100 0000 0000 0000
shiftr R7,R6,3 ; R7 = 0800 0000 1000 0000 0000
shiftr R7,R7,11 ; R7 = 0001 0000 0000 0000 0001

See Examples/Standard/Shift.asm.txt

39



3.3 Bit fields

lea R1,$ffff[R0] ; R1 = ffff
add R2,R0,R0 ; R2 = 0000
extract R2,11,8,R1,3 ; R2 = 0f00 R2.11~8 := R1.3~0

add R3,R0,R0 ; R3 = 0000
extracti R3,11,8,R0,3 ; R3 = 0f00 R3.11~8 := inv R0.3~0

The extract instruction modifies only the specified bits in the destination
register; the other bits remain unchanged. For example, if we put 0606 into a
register and then put 1 bits into positions 11 to 8 (i.e. the second hex digit),
the result is 0f06.

lea R1,$ffff[R0] ; R1 = ffff
lea R2,$0f0f ; R2 = 0606
extract R2,11,8,R1,3 ; R2 = 0f06 R2.11~8 := R1.3~0

extract Rd,f,g,Re,h e,15 Rd.f~g := Re.h~h+g-h+1
extracti Rd,f,g,Re,h e,16 Rd := extri Rd di sz Rs si

3.4 Saving registers for procedure call

A common way to implement a procedure call is to save the caller’s registers
on a stack, so the procedure can use those registers without destroying the
caller’s state. When the procedure is ready to return, it needs to load those
saved values back into the registers.

On a procedure call, save the registers onto the stack:

save R3,R5,6[R13] ; store R3-R5 into memory at 6[R13]

When the procedure returns, restore the registers from the stack:

restore R3,R5,6[R13] ; load R3-R5 from memory at 6[R13]

For an example, showing the contents of the stack and registers, see Ex-
amples/Standard/Testing/SaveRestore.asm.txt

3.5 Branching to pc-relative address

A branch instruction transfers control to a specified location, similar to a jump.
The difference is in how the location to jump to is specified: in a jump, the
address of the destination is specified as the effective address, while in a branch
the destination is specifed as an offset to be added to (or subtracted from) the
value in the pc register.

40



There are advantages for both jumps and branches, and many computers
have both. One big advantage of a branch is that it makes the machine lan-
guage code independent of the position of the program in memory. See the
section on the Linker.

A branch can either go forward, to a higher address, or backward, to a
lower address. Furthermore, a branch can be unconditional or conditional.

• brf branch forward unconditional

• brb branch backward unconditional

• brfc0 branch forward if Rd = 0

• brfc1 branch forward if Rd /= 0

• brbc0 branch backward if Rd = 0

• brbc1 branch backward if Rd /= 0

The unconditional branches take one operand, which is a constant called
the offset.

3.6 Stack instructions

3.7 Arithmetic on natural numbers

3.8 Modules and linking

3.9 System control registers

3.10 Interrupts

4 The Sigma16 architecture
Sigma16 contains a set of registers, an arithmetic logic unit (ALU) and func-
tional units for arithmetic calculations, a memory, a memory management
unit that provides virtual memory, an interrupt system, and an Input/Output
controller using direct memory access (DMA).

4.1 Implementations

The Sigma16 software application contains a complete programming environ-
ment, using emulation to implement the processor. The programming envi-
ronment includes a file manager, editor, assembler, linker, and emulator, and
it provides Input/Output and secondary storage. The software runs in a web
browser, and does not require any installation. There are also command line
tools which can be installed on a local computer, but they are not necessary.

41



There is also a digital circuit, specified in a functional hardware description
language, which implements the Core architecture. The circuit specification
is executable, and Core programs can be executed by simulating the circuit.
The circuit is suitable for implementation using either an FPGA or a custom
VLSI design. In simulation, the simulation driver provides Input/Output, and
in a hardware realisation these would be provided by I/O hardware.

4.2 Subsystems

A register is a digital circuit that can retain one word of data. A new value can
be loaded into a register, and the current contents may be read out. Registers
are fast, and most computation is performed using the registers. Sigma16
contains several groups of registers; each group is displayed in a box on the
Processor tab.

• The Register File is an array of 16 registers named R0, R1, . . ., R15.
These registers are accessible to the machine language program. Pro-
grams use the register file to hold variables that are currently in use.

• The Control registers (pc, ir, adr) keep track of the instruction that is
currently executing.

• The System registers control the system status and interrupts.

• The Virtual Memory registers are used for memory management.

The memory is an array of 216 words. Each word in the memory is identi-
fied by an address, which is a 16-bit natural number. The memory is similar
to the register file, but significantly slower and much larger.

Computational units. The ALU (arithmetic and logic unit) is a circuit
that can do arithmetic, such as addition, subtraction, comparison, and some
other operations More complex operations, such as multiplication and division,
are provided by functional units.

The Input/Output system can transfer data between the computer and
the outside world.

4.3 Words

In Sigma16, a word is a sequence of 16 bits. Occasionally we will also refer
to a double word (a sequence of 32 bits). A a generic word is a sequence
of bits of arbitrary length. The system does not use bytes (a byte is 8 bits) or
extended words (64 bits).

The hardware components in Sigma16 are mostly 16 bits wide. Each ad-
dressable memory location is a word, and a memory address is a word. Each
register is a word.

42



By itself, a word has no inherent meaning: it is just a sequence of bits.
Some instructions operate on a word without regard to what it means: for
example, several instructions copy a word from one place to another and it
doesn’t matter what the word means. Other instructions act on a word as-
suming that it represents some particular primitive data type. For example,
integer arithmetic assumes that the word represents an integer, while address
arithmetic assumes that the word represents a natural number.

Sigma16 supports natural numbers, and integers, which are represented as
words. It also supports Booleans, which are represented as a bit within a word.
Addresses and characters are represented as natural numbers.

4.3.1 Indexing bits in a word

The bits of a word are indexed from right to left, starting with 0. The least
significant (rightmost) bit has index 0, and the most significant bit (leftmost)
has index 15.

The notation x.i means the bit with index i in the word x, for 0 ≤ i ≤ 15.
For example, x.0 is the rightmost bit and x.15 is the leftmost bit. When used
in an instruction, a bit index is specified as a 4-bit binary number i such that
0 ≤ i ≤ 15.

The following table shows the indices of all the bits in a word. The vertical
bars break the word into groups of 4 bits. This grouping corresponds to the
representation of the word in hex notation.

x15 x14 x13 x12 | x11 x10 x9 x8 | x7 x6 x5 x4 | x3 x2 x1 x0

4.3.2 Fields

A bit field is a contiguous sequence of bits in a word. It is specified by two
numbers: the index of the leftmost bit in the field, and the size of the field.

4.3.3 Natural numbers

The natural numbers are 0, 1, 2, . . .. All natural numbers are nonnegative.
Natural numbers are represented in binary. Sigma16 uses natural numbers to
represent memory addresses. The binary value of an $n$-bit generic word x is

binval(x) =
∑

0≤i<n

xi ∗ 2i

For a word of 16 bits, natural numbers are restricted to the range from 0
through 216 − 1; that is, from 0 through 65,535. For a double word (32 bits),
natural numbers are restricted to the range from 0 through 232 − 1; that is,
from 0 through 4,294,967,295.

A natural number (and hence a binary number) cannot be negative. If you
need numbers that can be negative or positive, you must use an integer. The

43



arithmetic instructions in Sigma16 operate on integers, but address arithmetic
is performed in binary.

4.3.4 Integers

Integers are represented using two’s complement notation. If the leftmost
(most significant) bit of a word is 0, its two’s complement value is the same
as its binary value. If the leftmost bit is 1, the two’s complement value is
negative. Any two’s complement number can be negated by inverting all the
bits (replace 0 by 1 and vice versa) and then adding 1, discarding any overflow.

For example, consider x = 1111 1010. Since the leftmost bit is 1, we know
that x < 0. We can negate x by inverting the bits, obtaining 0000 0101.
Adding 1 gives 0000 0110 which is 6. Since −x = 6, we conclude that x = −6.

4.3.5 Notations for a word

Assembly language provides several notations for expressing the value of a
word. If a numeric value is out of range it is truncated.

• An unsigned integer between 0 and 65,535 (216 - 1)

• A signed integer between -32,768 and 32,767 (-215 and 215 - 1)

• A 4-digit hexadecimal constant, where the digits are 0-9 a-f. Sometimes,
when the context is clear, this is written as just the hex digits (e.g 3b2f).
In assembly language programs, hex constants are written with a preced-
ing $ sign (e.g. $3b2f). This is necessary to avoid ambiguity: 1234 is a
decimal number and $1234 is a hexadecimal number. In contexts where
there is no ambiguity, the $ may be omitted: for example, the user in-
terface shows register and memory contents as hexadecimal without the
leading $.

4.4 Memory

The memory is a hardware array of words that are accessed by address. A
memory address is 16 bits wide, and there is one memory location correspond-
ing to each address, so there are 216 = 64k memory locations. Each memory
location is a 16-bit word.

Instructions specify memory addresses in two parts: the displacement,
which is a word representing a binary number, and the index, which is one
of the registers in the register file. For example, a memory address could be
specified as $003c[R5]; the displacement is 003c and the index is R5.

When the instruction is executed, the computer calculates the effective
address by adding the value of the displacement and the value in the index
register. If R5 contains 2, then the effective address of $003c[R5] is 003e.

44



This scheme may seem more complicated than simply specifying the address
directly, but it is flexible. If the machine language just gave the address as a
single binary number, it would be limited to accessing simple static variables.
The effective address mechanism is simple to implement in hardware, as you
can see in the digital circuit processor, yet it allows the implementation of local
variables, records, arrays, pointers and linked data structures, jump tables, and
more. These techniques are described later.

4.5 Registers

4.5.1 Register file

The register file is a set of 16 general registers that hold a 16 bit word. A
register is referenced by a 4-bit binary number. In assembly language, we use
the notations R0, R1, R2, . . . , R9, R10, R11, R12, R13, R14, R15 to refer to
the registers. The state of the register file can be written as a table showing
the value of each register:

Register Contents
R0 0000
R1 fffe
R2 13c4
. . . . . .
R14 03c8
R15 0020

Sigma16 is a load/store style architecture; that is, it does not combine
memory accesses with arithmetic. All calculations are carried out in the reg-
ister file, and explicit load and store instructions must be used to copy data
between the memory and the register file.

There are some programming conventions that use certain registers for
special purposes. The hardware does not enforce, or even know about, these
conventions, and you do not have to follow the conventions in programming.
However, it is necessary to obey the conventions in order to use the standard
software libraries in your program. See the section on Programming for a
discussion of these standard usage conventions.

1. R0 contains the constant 0

One of the registers, R0, has a special property: it always contains the
constant 0. It is legal to perform an instruction that attempts to load
some other value into R0, but the register will still contain 0 after execut-
ing such an instruction. Such an instruction will simply have no lasting
effect.

2. R15 is the condition code register

45



Several instructions produce status information: the result of a com-
parison, whether there was an overflow, etc. This information is auto-
matically loaded into R15, which is the condition code register. The
description of each instruction states whether R15 is modified, and what
goes into it.

The bits in R15 are indexed from bit 0 (rightmost, or least significant)
to bit 15 (the lefttmost, or most significant). The condition code bits
that have specific meanings are called flags.

• Each bit position holds a Boolean value, either False or True, rep-
resented by 0 or 1 respectively.

• Each flag gives the status of a relation or event. If the flag is True
(1) the relation holds or the event has occurred. If the flag is False
(0) the relation does not hold, or the event has not occurred.

One way to use flags in the condition code is to control conditional jumps:

• Use jumpc0 to jump if the Boolean is False

• Use jumpc1 to jump if the Boolean is True

Another way to use condition code flags is to save them as Boolean
variables and perform logic operations on them. This is done using the
extract and logicr instructions.

There are separate flags for integers (represented as two’s complement)
and natural numbers (represented as binary). This is necessary because
the relation between two words sometimes depends on the type of the
data. For example, consider the word ffff (all 1 bits). On its own, ffff is
just a word of bits and has no inherent meaning.

• If ffff is interpreted as a natural number (i.e. binary), it is positive
and has the value 65,535, and ffff > 0000

• If ffff is interpreted as an integer (i.e. two’s complement), then it is
negative and has the value -1, and ffff < 0000.

Each flag has a short 1-character name to enable them to be displayed
compactly. A naming convention is that flags for integers (two’s comple-
ment) have lower case letters, while flags for natural numbers (binary)
have upper case letters. For example:

• l means < for integers

• L means > for integers

However, equality is the same regardless of type. If two words consist of
exactly the same bits, then they have the same value as integers, natural

46



numbers, characters, addresses, and for any other possible type as well.
Therefore there is only one flag for equality, and its symbol is =.

The following table lists all the condition code flags.

• index: Each flag has an index which gives its bit position in the
condition code. Bits are numbered from right to left, starting with
0.

• meaning: Description using English or mathematical notation

• symbol: Character that is showin in the processor display when the
flag is 1.

• name: Alphabetical name used as a variable name for the flag.

Table: Condition code flags

bit index Relation Symbol
0 > Int g
1 > Nat G
2 = =
3 < Nat L
4 < Int <
5 Int overflow v
6 Nat overflow V
7 Carry C
8 Stack overflow S
9 Stack underflow s

10 logicc function result f

There is an exception for division by zero, but no corresponding flag
in the condition code. The reason is that the div instruction places
the remainder in R15, so the condition code isn’t available to represent
division by 0. You can use an interrupt to detect division by 0, and you
can test explicity for division by 0 by using jumpz specifying the register
containing the divisor before execuing the div instruction.

4.5.2 Instruction control registers

There are several instruction control registers that enable the processor to
keep track of the state of the running program. These registers are rarely used
directly by the machine language program, but they are essential for keeping
track of the execution of the program, and some instructions use them directly.

1. pc

The pc (program counter) register contains the address of the next in-
struction to be executed (not the address of the instruction currently

47



being executed). The name is illogical, but "program counter" is the
traditional name so we will stick with standard terminology.

2. ir – instruction register

3. adr – address register

4. status register

Index Flag meaning
0 U/S 0: user state. 1: system state
1 E 1: interrupts enabled

4.5.3 Interrupt control registers

1. req and mask

The Interrupt request and mask registers contain the same bits. When
an interrupt is requested, the corresponding bit is set in the req regis-
ter. When the next instruction is executed, the interrupt occurs if the
corresponding mask bit is 1.

Index Flag meaning
0 timer timer interrupt request
1 seg fault segmentation fault
2 sovfl stack overflow
3 sufl stack underflow
4 utrap user trap
5 tc ovfl integer overflow
6 bin ovfl natural overflow
7 zdiv divide by 0

2. rstat

When an interrupt occurs, the value of the status register is copied into
rstat.

3. rpc

When an interrupt occurs, the value of pc is copied into rpc. This is
necessary to enable the operating system to resume the interrupted pro-
gram.

4. vect

The interrupt vector register contains the address of an array of addresses
of interrupt handlers.

48



4.5.4 Memory management registers

(Will be implemented in future version)

4.6 Instruction representation

Instructions are represented in the memory of the computer using words, just
like all other kinds of data. From the programmer’s perspective, an instruction
is like a simple statement in a programming language. From the circuit de-
signer’s perspective, instructions must be executed using logic gates, and the
specific way it is represented as a word of bits is important.

An instruction specifies several pieces of information. For example, add
R1,R2,R3 is an instruction that says four things: it’s an addition, the operands
come from R2 and R3, and the result goes into R1. Therefore to represent
instructions we need to organize a word as a collection of several fields, with
each field giving one specific piece of information about the instruction.

The particular scheme for describing an instruction as a collection of fields
is called an instruction format. Like most computers, Sigma16 has a small
number of instruction formats and a larger number of instructions. The key
to understanding the interface between machine language and digital circuit
design is to master the instruction formats.

The core architecture (the simplest part of the system) uses just two in-
struction formats: the RRR format for instructions that perform calculations
in the registers, and the RX format for instructions that refer to a memory
location.

The advanced parts of the architecture provide additional instructions
which are represented with the EXP format. The name EXP stands simulta-
neously for expansion (because it provides for many additional instructions)
and experimental (because it allows for experimentation with the design and
implementation of new instructions).

Every instruction has a 4-bit field called the opcode (op for short). This
gives 16 values of the opcode: 14 of them (0 through 13) denote the 14 RRR
instructions, described later. If the op field is 14 (hex e) the instruction is
EXP format and has a secondary opcode in the a and b fields. If the op field
contains 15 (hex f) the instruction is RX format with a secondary opcode in
the b field. The instruction formats are described below.

The first word of every instruction contains the following fields.

• op (bits 0-3) opcode, determines instruction format

• d (bits 4-7) 4-bit destination

• a (bits 8-11) 4-bit operand

• b (bits 12-15) 4-bit operand, or expanded opcode for RX

49



The details of each format and its fields are given below, and The following
table gives an overview.

• Each instruction format has a fixed size, which is the number of words
used to represent any instruction of that format.

• These words are subdivided into 4-bit fields, each with a unique name:
op, d, a, b, etc.

• The type of instruction is specified by the opcode, which is the op field
for RRR instructions, and which consists of several fields for the other
formats.

• The instruction operands are specified by further fields.

• Some instructions combine two 4-bit fields into a single 8-bit field.

– The a and b fields may be combined to form an 8-bit field called ab
(only for the EXP format)

– The g and h fields may be combined to form an 8-bit field called gh

Format Size Opcode Operands Example
RRR 1 op d,a,b add Rd,Ra,Rb
RX 2 op,b d,a,disp load Rd,disp[Ra]
EXP 2 op,ab d,e,f,g,h save Rd,Re,gh[Rf]

There are two kinds of format: the machine instruction formats, and the
assembly language instruction statement formats. There are three machine
instruction formats: RRR, RX, EXP. However, there is a larger set of assem-
bly language statement formats, because there are special syntaxes for some
instructions, and there are assembler directives that aren’t instructions at all.
The assembly language formats are described later.

4.6.1 RRR format

The RRR format is used for instructions that perform calculations in the reg-
isters, without using memory.

An instruction in RRR format is one word containing four 4-bit fields called
op, d, a, b. The op field is the operation code. If 0 ≤ op ≤ 13, its value
specifies which RRR instruction this is. If 13 < op, this means the instruction
"escapes" to another addressing mode. If op = 15 the instruction is RX format,
and op = 14 means it is EXP format.

op d a b

Most RRR instructions have two operand registers specified in the a and
b fields. They perform a calculation on the values in these registers, and the
result is written into the d register (d for destination).

50



4.6.2 RX format

The RX format is used for instructions that access the memory. There are two
operands: a memory address and a register. The memory address is specified
using two fields: a constant (called the displacement) and a register (called the
index register).

An RX instruction consists of two words. The first has the same format
as RRR. The op field is 15, which means "this instruction has RX format".
A secondary operation code is needed to specify which RX instruction this is,
this is given in the b field. The d field is the destination register, and the a field
is the index register. There is only one operand register for RX instructions,
since the b field is needed for the secondary operation code.

op d a b

The second word consists of one 16-bit field called the displacement (ab-
breviated as disp).

displacement

The index register Rb and the displacement together specify the effective
address. The assembly language syntax for the effective address is disp[Rb],
and its value is disp + Rb. For example, suppose R4 contains 7 when the
following instruction is executed:

load R2,5[R4]

The address operand is 5[R4], where the displacement is 5 and the index is
R4. When the instruction executes, the effective address is 5+R4 = 5+7 = 12,
or $000c.

The displacement is a constant given in the instruction, but the index reg-
ister is variable. Since R0 always contains 0, the effective address for disp[R0]
is the value of disp.

The displacement is represented in binary, and the effective address is cal-
culated in binary, not in two’s complement. Thus the effective address of
ffff[R0] is the (positive) address of the last word in memory – it isn’t a
negative number.

4.6.3 EXP format

The EXP instructions provide more complex operations, and they belong to
the Standard architecture. (The Core architecture uses only RRR and RX).
An EXP instruction consists of two words.

The first word has the same op and d fields as RRR and RX. The op field
contains 14 (hex e), which indicates that the instruction is EXP format. The
a and b fields are treated as one 8-bit natural number, which is the secondary

51



operation code. This provides for the possibility of up to 256 EXP format
instructions, which enables new experimental instructions to be defined.

op d ab

e f g h

op d ab

The second word contains for 4-bit fields. Each of these may contain either
a register number or a short 4-bit number, depending on the instruction.

e f g h

4.6.4 Notation for machine language

We usually write instructions in assembly language (sub R3,R12,R9) but the
computer executes machine langugae (13c9). When each instruction is de-
scribed below, an example is given showing a typical use of the instruction,
along with the general form of the assembly language instruction.

The general form uses the machine language field names to show where
each piece of the instruction goes in the machine code. The instruction format
is also given, along with any constant fields.

For example, here is the general form of the logicu instruction:

logicu Rd,e,Rf,g,h ; Rd.e := h (Rd.e, Rf.g)
EXP op=#e ab=$14

The format is EXP, so the instruction has all the fields of the EXP format:
op, d, ab, e, f, g, h. There are two constant fields: op is $e, and ab is $14. The
values of the other fields are given in the general form of the assembly language.
The operands Rd and Rf refer to registers, and those register numbers go into
the d and f fields of the instruction. The e, g, and h fields are given as
numbers in the assembly language. (The assembly language convention is to
give constants in decimal notation, not hexadecimal.)

Example:

logicu R7,5,R2,13,xor ; R7.5 := R7.5 xor R2.13
e714 52d6

5 Instruction set

5.1 Accessing memory

A memory address is a 16-bit binary number. Instructions don’t specify ad-
dresses directly; they specify an address with two components: a displace-
ment and an index, written as "displacement[index]". The displacement is a

52



16 bit constant, and in assembly language it may be given as a decimal integer,
a hexadecimal word, or a label. The index is a register. For example,$0c45[R5]
has a displacement of 0c45 and an index of R5.

When an instruction executes, the machine takes the displacement and
index and calculates the effective address. This is defined to be the binary
sum of the displacement and the curent value in the index register. In the
example above, if R5 contains 3, then the effective address of $0c45[R5] is
$0c48.

If you just want to specify an address a in an instruction, this can be
written as "a[R0]". Since R0 contains the constant 0, the effective address is
just a.

5.1.1 lea

The load effective address instruction lea Rd,disp[Rx] calculates the ef-
fective address of the operand disp[Rx] and places the result in the destination
register Rd. The effective address is the binary sum disp+Rx.

5.1.2 load

The load instruction load Rd,disp[Rx] calculates the effective address of the
operand disp[Rx] and copies the word in memory at the effective address into
the destination register Rd. The effective address is the binary sum disp+Rx.

—————– —————————————– general form load Rd,disp[Ra]
effect reg[Rd] := mem[disp+reg[Ra]] machine format RX assembly format RX
—————– —————————————–

Examples

load R12,count[R0] ; R12 := count
load R6,arrayX[R2] ; R6 := arrayX[R2]
load R3,$2b8e[R5] ; R3 := mem[2b8e+R5]

5.1.3 store

The store instruction store Rd,disp[Rx] calculates the effective address of
the operand disp[Rx] and the value of the destination register Rd into memory
at the effective address. The effective address is the binary sum disp+Rx.

—————– —————————————– general form store Rd,disp[Ra]
effect mem[disp+reg[Ra]] := reg[Rd] machine format RX assembly format RX
—————– —————————————–

Store copies the word in the destination register into memory at the effective
address. This instruction is unusual in that it treats the "destination register"
as the source of data, and the actual destination which is modified is the
memory location.

Most instructions take data from the rightmost operands and modify the
leftmost destination, just like an assignment statement (x := y+z). However,

53



the store instruction operates in the opposite direction. The reason for this
has to do with the circuit design of the processor. Although the "left to right"
nature of the store instruction may look inconsistent from the programmer’s
point of view, it actually is more consistent from the deeper perspective of
circuit design.

Examples

store R3,$2b8e[R5]
store R12,count[R0]
store R6,arrayX[R2]

5.1.4 Stacks

Three instructions (push, pop, top) support operations on a stack represented
as an array of contiguous elements, where the stack grows from lower to higher
addresses. These instructions provide safe operations: they never overwrite
memory outside the stack, and they indicate stack underflow and overflow by
setting the condition code and optionaly performing an exception.

A stack is represented by three addresses, which are provided to the push,
pop, and top instructions in registers:

• The stack base is the address of the first word allocated for the stack.

• The stack limit is the address of the last word allocated for the stack.

• The stack top is the address of the stack element that was pushed most
recently.

Although three addresses are required to characterise the state of a stack,
each individual stack instruction (push, pop, top) requires only two of those
addresses. These are supplied as the Ra and Rb operands, while Rd is used to
supply or receive the data value.

The maximum number of elements the stack may contain is stack limit -
stack base + 1. Normally, stack limit is greater than stack base. If they are
equal, there is only one word allocated for the stack (which is generally not
useful), and if stack base > stack limit then no memory at all is allocated and
every stack operation will signal an underflow or overflow error.

If the stack is not empty, then stack top is the address of the top element
in the stack. If the stack is empty, then stack top must be stack base - 1.

A stack can be created and initialized by allocating a region of memory,
setting stack base to the first word and stack limit to the last word, and setting
stack top to stack base - 1.

1. push

The push instruction pushes an element onto a stack. It is RRR format,
and its general form is:

54



push Rd,Ra,Rb

• Rd = stack data: value to be pushed, unchanged

• Ra = stack top: incremented unless stack was full

• Rb = stack limit : unchanged

• R15 condition code indicates stack overflow

• System interrupt request register indicates stack overflow

This instruction pushes the word in Rd onto a stack with stack top in
Rd and stack limit in Rb, provided that the stack is not full. The push
stores the data word in Ra into memory and increments stack top Rd.
If the stack is full, nothing is stored into memory and a stack overflow
error is indicated in the condition code and interrupt request registers;
an interrupt will occur if interrupts are enabled and the stack mask bit
is set. The operational semantics is:

if Ra < Rb
then Ra := Ra + 1; mem[Ra] := Rd
else R15.sovfl := 1, req.sovfl := 1

If Rd = Rb this means the stack completely fills the region of memory
allocated for the stack, and there is no space to store a new element. In
this case, the push instruction does not store Ra, it doesn’t modify Rd,
it doesn’t modify memory outside the block, and it doesn’t overwrite
data in the stack. Instead, the instruction indicates a stack overflow by
setting the sovfl (stack overflow) bit in the condition code (R15), and it
also sets the stack fault bit in the interrupt request register. If interrupts
are enabled and the stack fault bit is set in the interrupt mask register,
then an interrupt will occur after the push instruction completes. There
will be no interrupt if interrupts are disabled, or the stack fault bit is
not set in the mask register.

2. pop

The push instruction removes an element onto a stack and returns it.
The instruction is RRR format, and its general form is:

pop Rd,Ra,Rb

• Rd = stack data: destination for the popped stack element

• Ra = stack top: decremented unless stack was empty

• Rb = stack base: unchanged

• R15 condition code indicates stack underflow

55



• System interrupt request register indicates stack underflow

This instruction pops the word from a stack with stack top in Ra and
stack base in Rb, provided that the stack is not empty. The pop loads
the top element of the stack into Rd and decrements stack top. If the
stack is empty, stack top is not decremented, Rd is not modified, and
a stack underflow error is indicated in the condition code and interrupt
request registers; an interrupt will occur if interrupts are enabled and
the stack mask bit is set. The operational semantics is:

if Ra >= Rb
then Rd := mem[Ra]; Ra := Ra - 1
else R15.suvfl := 1, req.suvfl := 1

3. top

The top instruction returns the top element on a stack but does not
remove it. The instruction is RRR format, and its general form is:

top Rd,Ra,Rb

• Rd = stack data: destination for the top element of the stack; un-
changed if stack is empty

• Ra = stack top: unchanged

• Rb = stack base: unchanged

• R15 condition code indicates stack underflow

• System interrupt request register indicates stack underflow

This instruction loads the element at stack top into Rd, provided that
the stack is not empty. If the stack is empty, Rd is not modified and
a stack underflow error is indicated in the condition code and interrupt
request registers; an interrupt will occur if interrupts are enabled and
the stack mask bit is set. The operational semantics is:

if Ra >= Rb
then Rd := mem[Ra]
else R15.suvfl := 1, req.suvfl := 1

56



5.1.5 Stack frames

When a program calls a procedure it is usually necessary to save the state of
the caller in a data structure called a stack frame. (This is not necessary during
a "tail call".) The stack frame is pushed onto the execution stack. When the
procedure returns, the contents of the stack frame need to be loaded back into
the registers. These operations can be performed by ordinary store instructions
(for procedure call) and load instructions (for procedure return). However, this
often requires a significant number of instructions.

The save and restore instructions transfer a block of data between regis-
ters and memory, making it easier to use stack frames. These instructions are
analogous to store and load, but they store or load multiple words, not just
an individual word.

• save stores a sequence of adjacent registers into a block of contiguous
memory locations.

• restore is the opposite: it loads the block of memory into the registers.

For both instructions, the sequence of registers is specified by giving the
first and last register. The starting address of the memory block is specified
by an effective address of the form offset[Reg], where Reg is any register
(e.g. R4, R13, etc) and offset is a number between 0 and 255.

Normally d ≤ e, in which case the number of registers to be saved is e−d+1.
If d > e, the instruction will do nothing. The base register Rf should not lie
within the group of registers to be saved or restored.

The first register to be saved is Rd, and the last register to be saved is Re.
The instruction always stores at least one register. If d = e, for example save
R5,R5,0[R14] then only R5 is stored. If d < e then the register numbers wrap
around For example,

There is an important restriction with save and restore: the displacement
is limited to a small natural number between 0 and 255. (Recall that for load
and store, the displacement can be as large as 65,535.) The reason for this
is that the save and restore instructions are EXP format and the offset is
represented by an 8-bit field (whereas load and store are RX format and the
displacement is a 16-bit word).

The instruction is EXP format, and the offset is limited to 8 bits, because
it is specified in the gh field, which is the rightmost 8 bits of the second word
of the instruction. The secondary opcode is 9, which is in the ab field of the
first word of the instruction.

1. save

The general form is

save Rd,Re,gh[Rf]
EXP op=#e ab=$0b

57



The save instruction performs a sequence of stores:

• mem[Rf + gh] := Rd

• mem[Rf + gh+ 1] := Rd+1

• mem[Rf + gh+ 2] := Rd+2

• . . .

• mem[Rf + gh+ e− d] := Re

For example, the following instruction will save registers R3 through R9
into memory starting at address 6 + R13:

save R3,R9,6[R13] ; e30b 9d06. store R3-R9 starting at 6[R13]

It is equivalent to a sequence of store instructions:

store R3,6[R13]
store R4,7[R13]
store R5,8[R13]
store R6,9[R13]
store R7,10[R13]
store R8,11[R13]
store R9,12[R13]

As this example shows, using save and restore can make procedure
calls more concise and readable as well as less error-prone.

2. restore

This restore instruction has the same operands as the corresponding
save, and it performs a sequence of stores corresponding to the loads
performed by save. The general form is

restore Rd,Re,gh[Rf]
EXP op=#e ab=$0c

The restore instruction performs a sequence of loads:

- $R_d := \mathsf{mem}[R_f+gh] $
- $R_{d+1} := \mathsf{mem}[R_f+gh+1] $
- $R_{d+2} := \mathsf{mem}[R_f+gh+2] $
- $\ldots$
- $R_e := \mathsf{mem}[R_f+gh+e-d] $

For example, consider this instruction:

58



restore R3,R10,4[R14]

The effect is equivalent to

load R3,4[R14]
load R4,5[R14]
load R5,6[R14]
load R6,7[R14]
load R7,8[R14]
load R8,9[R14]
load R9,10[R14]
load R10,11[R14]

Suppose a stack frame was created by the save example above. To
restore the registers from the stack frame, use:

restore R3,R9,6[R13] ; e30b 9d06. store R3-R9 starting at 6[R13]

It is equivalent to a sequence of store instructions:

load R3,6[R13]
load R4,7[R13]
load R5,8[R13]
load R6,9[R13]
load R7,10[R13]
load R8,11[R13]
load R9,12[R13]

restore R3,R5,6[R13] ; e30c 5d06. load R3-R5 starting at 6[R13]

This is equivalent to a sequence of load instructions:

load R3,6[R13]
load R4,7[R13]
load R5,8[R13]
load R6,9[R13]

The restore instruction copies a sequence of consecutive memory lo-
cations starting from the effecive address into a sequence of adjacent
registers. The index register (R14 in this example) is not changed. Re-
store is equivalent to a fixed sequence of load instructions; its purpose of
restore is to restore the state of registers from memory after a procedure
call or a context switch.
The instruction restore Re,Rf,gh[Rd] copies the contents of memory
at consecutive locations beginning with mem[gh+Rf] into registers Re,
Re+1, . . . , Rf.

59



3. Procedure call and return

A common usage of save and restore is to simplify procedure call and
return. When a procedure is called, store the registers onto the execution
stack when a procedure is called (using save), and then to load them back
from the stack when the procedure is returned (restore). Normally, the
format of a stack frame has a fixed location for saving the registers, at
a small offset from the beginning of the frame. A register called the
stack pointer gives the address of the frame, and the offset for saving the
registers is normally a small value (such as 3 or similar).

5.2 Arithmetic

5.2.1 add

The instruction add Rd,Ra,Rb has operands Ra and Rb and destination Rd. It
fetches the operands Ra and Rb, calculates the sum Ra + Rb, and loads the
result into the destination Rd. The effect is Rd := Ra + Rb. For example, add
R5,R12,R2 performs R5 := R12 + R3.

The add instruction is RRR format with opcode=0. Given destination Rd
and operands Ra and Rb (where d, a, b are hex digits), add Rd,Ra,Rb is
reprseented by 0dab.

Code Assembly Effect —– —————- —————— 062c add R6,R2,R12
; R6 := R2 + R12 0d13 add R13,R1,R3 ; R13 := R1 + R3

The add instruction sets both the destination register and the condition
code. Flags in the condition code indicate overflow, carry, and sign of the
result.

——— ——————— R15.ccG result > 0 (binary) R15.ccg result > 0
(two’s complement) R15.ccE result = 0 R15.ccl result <tc 0 (two’s com-
plement) R15.ccV overflow (binary) R15.CCv overflow (two’s complement)
R15.CCc carry output ——— ———————

The bits in a word are numbered from right to left, starting at bit index
0 in the rightmost (least significant) position, up to index 15 at the leftmost
(most significant) position. The notation x.n denotes the bit in x with index
n.

A field is a consecutiave sequence of bits within a word. A field is specified
with the index of the leftmost bit in the field, along with the size of the field.
For example, the field in x with index 9 and size 3 consists of the bits x.9 x.8
x.7.

add R1,R2,R3 ; R1 := R2 + R3

The instruction add Rd,Ra,Rb has operands Ra and Rb and destination
Rd. It fetches the operands Ra and Rb, calculates the sum Ra + Rb, and
loads the result into the destination Rd. The effect is Rd := Ra + Rb. For
example, add R5,R12,R2 performs R5 := R12 + R3.

60



The add instruction is RRR format with opcode=0. Given destination Rd
and operands Ra and Rb (where d, a, b are hex digits), add Rd,Ra,Rb is
reprseented by 0dab.

Code Assembly Effect
062c add R6,R2,R12 ; R6 := R2 + R12
0d13 add R13,R1,R3 ; R13 := R1 + R3

The add instruction can be used for both binary addition (on natural num-
bers) and for two’s complement addition (on signed integers).

• 16-bit natural numbers are unsigned integers 0, 1, 2, . . . , 65535. If
two natural numbers are added, the result is a natural number (the
result cannot be negative). If the result is 65536 or larger, it cannot be
represented as a 16 bit binary number. If this happens, the destination
register is set to the lower 16 bits of the true result, and the binary
overflow flag is set in the Condition Code.

• 16-bit two’s complement numbers are signed integers -32999?, . . . , -1,
0, 1, . . . , 32???. If two signed integers are added, the result is a signed
integer. If the result is less than -32000 or greater than 32000, then the
result cannot be represented as a 16 bit two’s complement number. If
this happens, the destination register is set to the lower 16 bits of the
true result, and the two’s complement overflow flag is set in the Condi-
tion Code. Furthermore, the overflow flag is set in the req register. If
interrupts are enabled and the overflow flag is 1 in the mask register, then
an interrupt will occur immediatelhy after the add instruction executes.

The add instruction can be used for both binary addition (on natural num-
bers) and for two’s complement addition (on signed integers).

• 16-bit natural numbers are unsigned integers 0, 1, 2, . . . , 65535. If
two natural numbers are added, the result is a natural number (the
result cannot be negative). If the result is 65536 or larger, it cannot be
represented as a 16 bit binary number. If this happens, the destination
register is set to the lower 16 bits of the true result, and the binary
overflow flag is set in the Condition Code.

• 16-bit two’s complement numbers are signed integers -32999?, . . . , -1,
0, 1, . . . , 32???. If two signed integers are added, the result is a signed
integer. If the result is less than -32000 or greater than 32000, then the
result cannot be represented as a 16 bit two’s complement number. If
this happens, the destination register is set to the lower 16 bits of the
true result, and the two’s complement overflow flag is set in the Condi-
tion Code. Furthermore, the overflow flag is set in the req register. If
interrupts are enabled and the overflow flag is 1 in the mask register, then
an interrupt will occur immediatelhy after the add instruction executes.

61



5.2.2 sub

Example: sub R1,R2,R3 ; R1 := R2 - R3
This instruction is similar to add; the only difference is that it calculates

R2-R3 and places the result in R1. The effect on the condition code is the
same as for add.

The instruction sub Rd,Ra,Rb has operands Ra and Rb and destination
Rd. It fetches the operands Ra and Rb, calculates the difference Ra - Rb, and
loads the result into the destination Rd. The effect is Rd := Ra - Rb. For
example, sub R5,R12,R2 performs R5 := R12 - R3.

The sub instruction is RRR format with opcode=1.
Code Assembly Effect —– —————- —————— 162c sub R6,R2,R12

; R6 := R2 - R12 1d13 sub R13,R1,R3 ; R13 := R1 - R3
In addition to setting the destination register, the sub instruction sets sev-

eral bits in the condition code R15 and may set a bit in the req register.
——— ——————— R15.ccG result > 0 (binary) R15.ccg result > 0

(two’s complement) R15.ccE result = 0 R15.ccl result < 0 (two’s complement)
R15.ccV overflow (binary) R15.CCv overflow (two’s complement) R15.CCc
carry output R15.ccf logicc instruction function result ——— ———————

5.2.3 mul

Example: mul R1,R2,R3 ; R1 := R2 * R3
The multiply instruction mul Rd,Ra,Rb calculates the integer (two’s com-

plement) product of the operands Ra and Rb, and places the result in the
destination register Rd. The mul instruction does not produce the natural
(binary) product.

If the magnitude of the product is too large to be representable as a 16 bit
two’s complement integer, this is an overflow. If overflow occurs, the integer
overflow bit is set in the condition code (F15) and the integer overflow bit is
also set in the interrupt request register (req), and the lower order 16 bits of
the product are loaded into Rd.

——— ——————— R15.ccg result > 0 (two’s complement) R15.ccE
result = 0 R15.ccl result < 0 (two’s complement) R15.CCv overflow (two’s
complement) R15.CCc carry output ——— ———————

5.2.4 div

Example: div R1,R2,R3 ; R1 := R2 / R3, R15 := R2 rem R3
Unlike the other arithmetic operations, the divide instruction div Rd,Ra,Rb

produces two results: the quotient Ra / Rb and the remainder Ra rem Rb.
It loads the quotient into the destination register Rd, and the remainder is
loaded into R15.

If the destination register Rd is actually R15, then the quotient is placed
in R15, and the remainder is discarded.

62



The divide instruction doesn’t set the condition code, since R15 is used for
the remainder. Therefore there is no condition code bit to indicate division by
0. However, it is easy for a program to detect a division by 0.

• (Explicit test for error) The program can compare the divisor with 0
before or after executing the divide instruction, and jump to an error
handler if the divisor is 0. This is similar to testing the condition code
after an add, sub, or mul instruction, but it does require two instructions:
a compare followed by a conditional jump. For example:

div R1,R2,R3 ; R1 := R2/R3, R15 := R2 rem R3
cmp R3,R0 ; Did we divide by 0?
jumpeq zeroDivide[R0] ; If yes, handle error

• (Exception) The program can detect division by 0 using an interrupt.
To do this, enable interrupts and enable the interrupt mask for division
by 0. See the section on Interrupts. This approach does not require a
compare or jump instruction for each division.

5.2.5 cmp

The compare instruction cmp Ra,Rb compares the values in the operand regis-
ters Ra and Rb, and then sets flags in the condition code (R15) to indicate the
result. The notation R15.i means bit i in R15; thus R15.0 is the leftmost bit
of R15. The instruction performs both natural number comparison (binary)
and integer comparison (two’s complement). The resulting flags are

• binary less than (L) in R15.0

• two’s complement less than (<) in R15.1

• equal in R15.2

• binary greater than (G) in R15.3

• two’s complement greater than (>) in R15.4

The result of a cmp instruction can be used to control a conditional jump.
The jumpc0 instruction jumps is a specified bit of R15 is 0, and the jumpc1
instruction jumps if a specified bit is 1.

Pseudoinstructions provide the most common cases; for example jumple
jumps if the condition code indicates that a comparison produced either in-
teger less-than or equal. A common pattern is a cmp followed by a jump
pseudoinstruction, for example:

cmp R4,R9 ; compare R4 with R9
jumpgt abc]R0] ; if R4 > R9 then goto abc

63



5.2.6 addc

The addc instruction performs a binary addition with carry propagation. It
adds the two operand registers and the carry bit in the condition code register,
R15. The sum is loaded into the destination register Rd and the carry output
is written back into the carry bit, overwriting its previous value. Overflow is
not possible with this instruction.

5.2.7 muln

muln Rd,Ra,Rb

The muln instruction calculates the product of two natural numbers in Ra
and Rb. The result is 32 bits; the leftmost 16 bits (the most significant part) is
loaded into R15, and the rightmost 16 bits (the least significant part) is loaded
into Rd. If Rd is R15, the most significant part is discarded.

5.2.8 divn

divn Rd,Ra,Rb

The divn instruction divides two natural numbers: dividend / divisor. All
the numbers – numerator, denominator, quotient, remainder – are natural
numbers represented in binary.

• The dividend is a 32 bit natural number; its leftmost 16 bits are in R15
and the rightmost 16 bits are in Ra. Thedenominator is in Rb.

• Two results are produced: a 32-bit quotient anda 16-bit remainder.

• The leftmost 16 bits of the quotient are placedin R15 (replacing the
leftmost part of the dividend). The rightmost16 bits of the quotient are
placed in Rd.

• The remainder is placed in Ra, overwriting the least significant half of
the dividend operand

5.3 Jumps

A jump is a transfer control to another address, rather than to the following
instruction. The destination address is specified as the effective address in the
jump instruction. A jump can be used to implement a goto statement. (See
also Branches.)

64



5.3.1 jump

5.3.2 jumpc0, jumpc1

5.3.3 jumpz, jumpnz

5.3.4 jal

5.4 Branches

A branch instruction transfers control to another address, rather than to the
following instruction. The destination address is specified as an offset relative
to the value of the pc (after the pc has been incremented). A branch can be
used to implement a goto statement. (See also Jumps.)

5.4.1 brf, brb

The brf instruction is Branch forward, and the brb instruction is branch back-
ward.

The operand is a 16-bit natural number called the offset. This is added
to (brf) or subtracted from (brb) the current value of the pc register. Since
the pc is incremented as the instruction is fetched, an offset of 0 refers to the
instruction after the brf/brb.

a brf 3
add R0,R0,R0 ; brf 0 would go here
add R0,R0,R0 ; brf 1 would go here
add R0,R0,R0 ; brf 2 would go here

b add R0,R0,R0 ; the instruction a actually goes here

Normally the operand is expressed as a label rather than a constant.

a brf b
add R0,R0,R0
add R0,R0,R0
add R0,R0,R0

b add R0,R0,R0 ; the instruction a goes here

If the operand is expressed as a number (brf 3), the assembler uses the
number in the machine instruction. However, if the operand is expressed as a
lable (brf b), the assembler calculates the correct offset value and inserts that
into the machine instruction.

In order to implement goto xyz, use brf xyz (branch forward) if xyz occurs
after the branch instruction, and use brb xyz (branch backward) if xyz occurs
before the branch.

65



5.4.2 brfc0, brbc0, brfc1, brbc1

There are four conditional branch instructions that perform a branch based on
the value of a bit in a register. For example, brfc1 R7,3,dest is equivalent to
"go to dest if bit 3 of R7 is 1". The instructions are:

• brfc0 - branch forward if the specified bit is 0

• brfc1 - branch forward if the specified bit is 1

• brbc0 - branch backward if the specified bit is 0

• brbc1 - branch backward if the specified bit is 1

These instructions are somewhat similar to jumpc0 and jumpc1, but there
are two key differences:

• The branch instructions can use any bit in any register of the register
file to determine whether the branch will take place, but the jump in-
structions can use only a bit in the condition code R15.

• The branch instructions are pc-relative, but the jump instructions give
the absolute address of the destination.

5.4.3 brfz, brbz, brfnz, brbnz

These instructions perform a branch if a specified register is either equal to 0
(z), or not equal to 0 (nz). Equal to 0 means every bit in the register is 0;
not equal to 0 means some bit in the register is 1. For example, brfnz R3,dest
means "if R3 !=0 then goto dest".

• brfz - branch forward if zero

• brfnz - branch forward if not zero

• brbz - branch backward if zero

• brbnz - branch backward if not zero

5.4.4 dispatch

The dispatch instruction implements a branch table. It provides an efficient
way to implement a case statement using a binary code.

Suppose code is a variable that contains an integer, such that 0 ≤ code < 8.
The following set of instructions will branch to a specific destination depending
on the value of the code.

66



load R8,code[R0] ; load a 3-bit binary code
dispatch R8,3,0 ; 38 dispatch 3-bit code
brf caseA ; if code=0 then goto caseA
brf caseB ; if code=1 then goto caseB
brf caseC ; if code=2 then goto caseC
brf caseD ; if code=3 then goto caseD
brf caseE ; if code=4 then goto caseE
brf caseF ; if code=5 then goto caseF
brf caseG ; if code=6 then goto caseG
brf caseH ; if code=7 then goto caseH

The dispatch instruction has three operands: a register code that specifies
a binary code, an integer constant size that gives the number of bits in the
code, and a fixed offset (which is usually 0).

• The instruction automatically uses size to mask the code, by performing
a logical and. For example, if size is 3, it calculates code AND fff7. This
ensures that the resulting code is not out of range: it is guaranteed to
lie between 0 and 2size− 1.

• The instruction then performs a pc relative branch forward by a distance
of 2 * code + offset. The multiplication by 2 ensures that a 2-word
instruction can be placed in each position in the branch table.

• The branch table is normally a sequence of unconditional branch instruc-
tions, either brf or brb.

5.5 Logic

The commonest Boolean operators are inv, and, or, and xor. However, these
aren’t the only useful operations: there are 16 logic functions of two arguments.
Instead of providing specialised instructions for a few of the logic functions,
Sigma16 provides three general instructions that implement all of them.

• logicw performs logic on all the corresponding bits in two operand reg-
isters, and places the word result in a destination register.

• logicr performs logic on two operand bits within a register, and places
the result in a destination bit in the same register.

• logicb performs logic on two operand bits that may be in different reg-
isters. The result overwrites the first operand bit.

The bit logic instructions logicr and logicb extract the operand bits
from registers, calculate the result using a supplied function, and put the bit
back into a word, leaving the rest of the word unchanged. The word logic

67



instructions update every bit in the destination. The bit logic instructions
update only one bit in the destination, enabling you to keep many Boolean
variables in just one register.

Logic instructions make it easy to calculate any Boolean expression, but
they are not the only way. In some cases it is better to use "short circuit
evaluation".

5.5.1 General logic functions

The invert function (also called not, logical negation) has one input.

x inv x
0 1
1 0

The truth tables for and, or, xor have two inputs.

x y x and y x or y x xor y
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

These aren’t the only logic functions with two inputs. Every logic function
with two inputs x and y can be defined by a truth table where we list all
possible values for the inputs and give the corresponding result. Each input
could be either 0 or 1. Since there are 2, there are 22 = 4 lines in the truth
table.

The tables above give specific values, either 0 or 1, for each result. For
example, the result column for the and function is (reading from top to bottom)
0001, while xor is 0110. For an arbitrary function, we can write the result
column as abcd where each variable is either 0 or 1.

x y result
0 0 a
0 1 b
1 0 c
1 1 d

Since there are 4 variables, there are 24 possible settings of (a, b, c, d) and
consequently there are 16 Boolean logic functions that take two arguments. For
example, if (a, b, c, d) = (0, 0, 0, 1) this is the truth table for and. if (a, b, c, d) =
(0, 1, 1, 0) this is the truth table for xor.

The Sigma16 logic instructions take a 4-bit code that specifies the logic
function by giving the values of (a, b, c, d). In assembly language, the code is
given as a decimal number between 0 and 15. The codes for the most common
functions are:

68



abcd code name
0001 1 x and y
0110 6 x xor y
0111 7 x or y
1000 8 x nor y
1110 14 x nand y

Furthermore, the inv function can be treated as a 2-input function where
the second argument is ignored.

5.5.2 Word logic: logicw

The logicw instruction performs a bitwise logic operation on two operands:
each bit of the result is obtained by performing the logic function on the
corresponding bits of the two operands. The instruction allows an arbitrary
logic function on two bits.

An arbitrary logic function of two variables is applied to the two operand
registers Re and Rf, and the result is loaded into the destination register Rd.
The function h is specified as described above; for example, 6 is the code for
exclusive or. The general form is

logicw Rd,Re,Rf,h ; Rd := h (Re, Rf)
EXP. op=#e, ab=$12, g is ignored

The following example computes the xor of registers R1 and R2, and puts
the result into R3.

lea R1,$00ff[R0] ; R1 := 00ff
lea R2,$0f0f[R0] ; R2 := 0f0f
logicw R3,R1,R2,6 ; e312 1206. R3 := 0ff0

5.5.3 Pseudoinstructions: invw, andw, orw, xorw

If you’re using one of the most common logic functions, a pseudoinstruction
is convenient and can make a program more readable. There are pseudoin-
structions invw, andw, orw, xorw which have the same form as logicw except
the function is specified by the pseudo operation and the function operand is
omitted.

invw R3,R4 ; R3 := invert R4
andw R3,R4,R5 ; R3 := R4 and R5
or w R3,R4,R5 ; R3 := R4 or R5
xorw R3,R4,R5 ; R3 := R4 xor R5

A pseudoinstruction is not a machine instruction: the Sigma16 processor
does not have an andw instruction. Instead, the assembler generates the logicw
instruction corresponding to any of invw, andw, orw, xorw. The following
assembly language statements generate exactly the same machine language:

69



logicw R5,R7,R2,1 ; R5 := R7 and R2
andw R5,R7,R2 ; R5 := R7 and R2

If you prefer to use the actual machine instruction, rather than a pseudoin-
struction, you can define a symbol for the logic function using an equ assembly
directive. The symbol can then be used instead of the numeric code:

xor equ 6
...
logicw R5,R7,R2,xor ; R5 := R7 xor R2

5.5.4 Bit logic within a register: logicr

The logicr instruction allows you to specify any two operand bits and a
destination bit, all within the same register. This is convenient when a program
has a collection of Boolean flags kept in the same word. The general form is:

logicr Rd,e,f,g,h ; Rd.e := h (Rd.f, Rd.g)
EXP op=#e ab=$13

• Rd is the destination register, which also contains both source operands
bits

• e is the index of the destination bit

• f is the index of the first argument bit

• g is the index of the second argument bit

• h is the logic function

• The instruction format is EXP, with primary e and secondary opcode
$13.

Here is an example that performs logic on bits within R1, which is initialized
to 0002. and calculates the logic or of bit 0 (which is 0) and bit 1 (which is
1). The result goes into bit 10, changing R1 from $0002 to $0402. The logic
function or has code 7. Tthe operands are bits 9 and 2, and the result is placed
into bit 3. The instruction says: within R1, perform logic function 7 on bits 0
and 1, and place the result in bit 10.

lea R1,2[R0] ; R1 := 0002, R1.0 = 0, R1.1 = 1
logicr R1,10,0,1,or ; e113 a017. R1 := 0402, R1.10 = 1

The op field of the first word of the machine language code for this example
is 14 (hex e), indicating EXP format. The secondary operation code is $13,
which is stored in the ab field. Since the general form is logicr Rd,e,f,g,h,
we have d = 1, e = a, f = 0, g = 1, and h = 7, so the machine language code
is e113 a017.

If your program keeps a set of Boolean variables in one register, you can
calculate Boolean expressions in that register with logicr.

70



5.5.5 Pseudoinstructions invr, andr, orr, xorb

Pseudoinstructions are provided for the most common bit logic functions. The
operands are the same as for logicr, except the last operand is omitted, as
the function is specified by the mnemonic.

invr R1,3,9 ; R1.3 := inv R1.9
andr R1,3,9,2 ; R1.3 := R1.9 and R1.2
orr R1,3,9,2 ; R1.3 := R1.9 or R1.2
xorr R1,3,9,2 ; R1.3 := R1.9 xor R1.2

5.5.6 Bit logic across registers: logicb

The logicb instruction specifies two operand bits that may be in different
registers. The result will overwrite the first operand bit. The general form is:

logicb Rd,e,Rf,g,h ; Rd.e := h (Rd.e, Rf.g)
EXP op=$e ab=$14

Example:

lea R2,$0200[R0] ; R2.9 := 1
lea R7,$0000[R0] ; R7.13 := 0
logicb R2,9,R7,13,xor ; e214 97d6. R2 := 0200, R2.9 := R2.9 xor R7.13

5.5.7 Pseudoinstructions invb, andb, orb, xorb

invb R1,3,R2,9 ; R1.3 := inv R2.9
andb R1,3,R2,9 ; R1.3 := R1.3 and R2.9
orub R1,3,R2,9 ; R1.3 := R1.3 or R2.9
xorb R1,3,R2,9 ; R1.3 := R1.3 xor R2.9

The invb pseudoinstruction is more flexible than invr, as it allows the
operands to come from different registers. However, if you’re doing logic oper-
ations in a word of Booleans, it may be clearer to write invb R9,3,7 than to
write the equivalent invbr R9,3,R9,7.

5.5.8 Pseudoinstructions setb, clearb, moveb, movebi

The bit logic instructions have some useful special cases that don’t appear to
involve logic at all. These are supported by pseudoinstructions.

• setb Rd,e puts 1 into a specified bit: Rd.e : 1=.

setb R4,7 ; R4.7 := 1

• clearb Rd,e puts 0 into the specified bit.

71



clearb R4,7 ; R4.7 := 0

• moveb Rd,e,Rf,g copies a bit from one register into a specified position
in another register.

moveb R4,7,R12,5 ; R4.7 := R12.5

• movebi Rd,e,Rf,g inverts a bit and copies it from one register into a
specified position in another register.

moveb R4,7,R12,5 ; R4.7 := R12.5

5.6 Bit manipulation

5.6.1 Shifting: shiftl, shiftr

The shift instructions treat the operand as a string of bits, and move each bit
a fixed distance to the left or right.

The instruction shiftl Rd,Ra,k shifts the value in the operand register Ra
by h bits to the left, and the result is placed in the destination register Rd. The
operand Ra is not modified. The leftmost k bits of the operand are discarded
and the rightmost k bits of the result become 0. The general form is

shiftl Rd,Re,h
EXP op=$e, ab=$10, f,g are ignored

The instruction shiftr Rd,Re,k shifts the value in the operand register
Ra by k bits to the right, and the result is placed in the destination register
Rd. The operand Ra is not modified. During the shift, the rightmost k bits of
the value are discarded and the leftmost k bits become 0. The general form is

shiftr Rd,Re,h
EXP op=$e, ab=$11, f,g are ignored

The following instruction shifts the value in R3 to the right by 5 bits and
place the result in R2. The operand register R3 is not changed.

shiftr R2,R3,5

The instruction format is EXP, and the assembly language statement for-
mat is RRKEXP

The instruction shiftl Rd,Ra,k shifts the value in the operand register Ra
by k bits to the left, and the result is placed in the destination register Rd.
The operand Ra is not modified. During the shift, the leftmost k bits of the
value are discarded and the rightmost k bits become 0.

moveb R4,7,R12,5 ; R4.7 := R12.5

• movebi Rd,e,Rf,g inverts a bit and copies it from one register into a
specified position in another register.

moveb R4,7,R12,5 ; R4.7 := R12.5

72



5.6.2 Bit fields: extract, extracti

The extract and extracti instructions provide access to a field within a word.
The extract instruction copies an arbitrary field of bits from a source register
and inserts them into an arbitrary position in a destination register. The
destination field is overwritten, while other bits in the destination register as
well as all bits in the source register are unchanged.

The extracti instruction is similar, but it inverts the bits in the field before
they are inserted into the destination.

These instructions are useful for systems programming. Emulators need to
access instruction fields, software implementing floating point needs to access
the parts of a floating point number, and networking software needs to decode
message headers.

Bit indexing. Sigma16 indexes bit positions in a word from right to left,
starting from 0. The least significant (rightmost) bit has index 0, and the most
significant (leftmost) bit has index 15.

A bit field is a sequence of bits within a word. A field is specified using
a pair of 4-bit natural numbers L,R, where L is the index of the leftmost bit
in the field and R is the index of the rightmost bit. The size of a field is
max(0, L−R + 1). Consequently, if L < R the size is 0. For example:

• R8.6,4 is the field consisting of R8.6, R8.5, R8.4 and its size is 3.

• R8.11,11 is the field consisting of R8.11 and its size is 1.

• R8.15,0 is the field containing the entire contents of R8 and its size is 16.

• R8.5,7 is an empty field containing no bits; its size is 0

Machine language. The machine language format of extract and extracti
is EXP, with the following fields:

op d a b
e f g h

• op = $e (escape to EXP)

• Rd = destination register

• ab = secondary opcode: $15 for extract and $16 for extracti

• Re = source register

• f = destination start index L

• g = destination end index R

• h = source start index L

73



The instruction specifies the destination field as f, g. The field size S and
the R index for the source are not specified in the instruction: only the leftmost
index of the source field is specified explicitly as h.

The sizes of the source and destination fields must be the same. The size
and right index of the source are calculated as follows. The calculations verify
that both the source and destination fields have the same size.

• The size S of a field specified by L,R is max(0, L−R + 1).

• In general, R = L− S + 1.

• Destination field = Rd.f, Rd.f-1, . . . , Rd.g.

• Check that this works for destination: R = L−S+1 = f−(f−g+1)+1 =
f − f + g − 1 + 1 = g.

• Source field = Re.h, Re.h-1, . . . , Re.h-f+g

• Calculate R for source, which is not specified in the instruction. R =
L− S + 1 = h− (f − g + 1) + 1 = h− f + g − 1 + 1 = h− f + g.

Assembly language. The assembly language operand format for extract
is RkkRk, where R denotes a register number and k denotes a 4-bit constant.
The general form of the instruction, in assembly language, is

extract Rd,f,g,Re,h

Effect. The effect is to overwrite each bit in the destination field with the
corresponding bit in the source field:

Rd.f := Re.h
Rd.f-1 := Re.h-1
...
Rd.g := Re.h-f+g

For example, consider extract R14,9,7,R13,5, where f = 9, g = 7, h =
5. The field size is f − g + 1 = 9− 7 + 1 = 3, so 3 bit assignments take place.
The index of the rightmost bit in the source field = h− f + g = 5− 9+ 7 = 3.
Therefore the instruction performs the following bit assignments:

R14.9 := R13.5
R14.8 := R13.4
R14.7 := R13.3

; Assembly language: extract Rd,f,g,Re,h
; Effect: Rd.f..g := Re.h..(h+g-f)
; EXP opcode: e,15

; Example: extract R2,11,8,R1,3
; Machine language: e215 1b83

74



Example:

extract R2,7,4,R3,20
R2.7 := R3.20
R2.6 := R3.19
R2.5 := R3.18
R2.4 := R3.17

The extract and extracti instructions can be implemented using a combi-
nation of logic and shift instructions. They are included in the architecture
for several reasons:

• These operations provide useful abstractions for writing interpreters and
simulators.

• When used in an interpreter, bit field operations are executed frequently:
they are a crucial part of the "inner loop". Therefore the efficiency of
common bit field operations is important.

• The bit field instructions are easier to use and more readable than the
corresponding logic and shifts.

• These instructions can be implemented efficiently in a digital circuit and
this implementation is an interesting design problem.

The effect of an extract instruction can be described by writing each bit
assignment individually, so there are size individual bit assignments. The
notation R2.7 means the bit at position 7 in register R2. Using this notation,
the example above performs the following bit assignments:

extract R2,R1,11,3,4
R2.11 := R1.3
R2.10 := R1.2
R2.9 := R1.1
R2.8 := R1.0

Relation to other instructions. Although extract performs a number
of bit assignments, it is a single instruction and its execution time is a small
fixed number of clock cycles. The execution time does not depend on the value
of the field size, and extracting a large field doesn’t require more time than
extracting a small field. The hardware implementation of the instruction does
not use an iteration to copy the bits; they are all copied in parallel in one clock
cycle.

Any register may be specified for the source and destination. If they are
the same, the effect is to move a bit field from one place to another within the
register (this is not the same as a shift). If the destination is R0, the result is
discarded and the instruction has no effect.

These instructions can be implemented using a combination of logic and
shift instructions. They are included in the architecture for several reasons:

75



• These operations provide useful abstractions for writing interpreters and
simulators.

• When used in an interpreter, bit field operations are executed frequently:
they are a crucial part of the "inner loop". Therefore the efficiency of
common bit field operations is important.

• The bit field instructions are easier to use and more readable than the
corresponding logic and shifts.

• These instructions can be implemented efficiently in a digital circuit and
this implementation is an interesting design problem.

5.7 System control

5.7.1 Request to OS: trap

5.7.2 Accessing control: getctl, putctl

5.7.3 Context switching: resume

5.7.4 Timer: timeron, timeroff

6 Summary of instruction set
• The Mnemonic gives the symbolic name of the instruction used in as-

sembly language

• The ISA specifies the smallest subset of the instruction set architecture
that allows this instruction. The Core subset is a minimal architecture;
the Standard subset contains a full range of instructions

• The R15 entry indicates how the instruction uses R15: cc indicates the
instruction sets the condition code in R15, and x indicates the instruction
places data in R15. A blank entry means the instruction does not change
R15.

• The P entry indicates whether the instruction is Privileged (P) or not
(blank)

The Args column shows the assembly language statement format.

• R is a register, e.g. R4 or R15

• D is an expression denoting the displacement, which must be repre-
sentable in 16 bits

• k is a small constant representable in 4 bits, so 0 <= k < 16

• K is a large constant representable in 12 bits, so 0 <=k < 4096

76



The first word of an instruction:

Op D A B
J

Fields of the first instruction word:

• Op = bits 15..12. Used in all instructions as the primary operation code

• D = bits 11,10,9,8. Destination register (e.g. R5)

• A = bits 7..4. First operand register (e.g. R12)

• B = bits 3..0. is either second operand register (e.g. R7) or secondary
opcode (4-bit constant)

• k is a 4-bit constant in the d field, (e.g. 5)

• ab is 8-bit secondary opcode for EXP format (e.g. $c3)

• C is a control register specified by 4 bits

• A "don’t care" field is indicated with a dash

The second word of an instruction, for RX and EXP formats:
Formats for the second word of an instruction. The second word may

consist of one of the following:

• disp - a 16-bit constant

• kq - a 4-bit constant k (in the e field), followed by a 12-bit constant q
(in the fgh fields)

•

6.0.1 RRR format

This is some plain text. This is some plain text. This is some plain text. This
is some plain text. This is some plain text. This is some plain text. This is
some plain text. This is some plain text. This is some plain text. This is some
plain text. This is some plain text. This is some plain text.

77



Name P Args Op Effect
add d,a,b 0 Rd := Ra + Rb (cc)
sub d,a,b 1 Rd := Ra - Rb (cc)
mul d,a,b 2 Rd := Ra * Rb (cc)
div d,a,b 3 Rd := Ra / Rb, R15 := Ra rem Rb
cmp d,a 4 R15 := Ra cmp Rb (cc)
addc d,a,b 5 Rd := Ra + Rb + R15.carry (cc)
muln d,a,b 6 R15++Rd := Ra :*: Rb
divn d,a,b 7 R15++Rd := R15++Ra :/: Rb

d,a,b 8 nop, reserved
d,a,b 9 nop, reserved
d,a,b a nop, reserved
d,a,b b nop, reserved

trap d,a,b c user interrupt
d nop, reserved
e escape to EXP format
f escape to RX format

This is some plain text. This is some plain text. This is some plain text.
This is some plain text. This is some plain text. This is some plain text. This
is some plain text. This is some plain text. This is some plain text. This is
some plain text. This is some plain text. This is some plain text.

6.0.2 RX format

All RX instructions apart from testset are in the Core subset.
This is some plain text. This is some plain text. This is some plain text.

This is some plain text. This is some plain text. This is some plain text. This
is some plain text. This is some plain text. This is some plain text. This is
some plain text. This is some plain text. This is some plain text.

Name P Args Op Effect
lea d,a[x] f,0 Rd := ea
load d,a[x] f,1 Rd := M[ea]
store d,a[x] f,2 M[ea] := Rd
jump d,a[x] f,3 pc := ea
jumpc0 j,a[x] f,4 R15.k=0 => pc : ea
jumpc1 j,a[x] f,5 R15.k=1 => pc : ea
jal d,a[x] f,6 Rd := pc, pc := ea
testset d,a[x] f,7 Rd := M[ea], M[ea] := 1

f,8 nop, reserved
. . . nop, reserved
f,f nop, reserved

This is some plain text. This is some plain text. This is some plain text.
This is some plain text. This is some plain text. This is some plain text. This

78



is some plain text. This is some plain text. This is some plain text. This is
some plain text. This is some plain text. This is some plain text.

6.0.3 EXP format

Rkk D,K,Q

Name P Args Op Effect
brb x e,01 pc := pc+2-fgh
brfc0 d,k,q e,02 !Rd.e > pc + 2+fgh
brbc0 d,k,q e,03 !Rd.e > pc + 2-fgh
brfc1 d,k,q e,04 Rd.e > pc + 2+fgh
brbc1 d,k,q e,05 Rd.e > pc + 2-fgh
brfz d,x e,06 Rd=0 > pc + 2+fgh
brbz d,x e,07 Rd=0 > pc + 2-fgh
brfnz d,x e,08 Rd!=0 > pc + 2+fgh
brbnz d,x e,09 Rd!=0 > pc + 2-fgh
dispatch d,x e,0a Rd!=0 > pc + 2-fgh
save Rd,e,gh[Rf] e,0b M[ea] := R1,

. . . , M[ea+d-1] := Rd

. . . , M[ea+d-1] := Rd
restore Rd,e,gh[Rf] e,0c R1 := M[ea],

. . . , Rd := M[ea+d-1]
push Rd,E,F e,0d M[ea] := Rd, Rb++
pop D,E,F e,0e Rb–, Rd := M[ea]
top D,E,F e,1f Rb–, Rd := M[ea]
shiftl Rd,Re,h e,10 Rd := Re shl h
shiftr Rd,Re,h e,11 Rd := Re shr h
logicw Rd,Re,Rf,h e,12 Rd := Re (lut g) Rf
logicr Rd,e,f,g,h e,13 Rd.e := Rd.f (lut h) Rd.g
logicb Rd,e,Rf,g,h e,14 Rd.e := Rd.f (lut h) Rd.g
extract Rd,f,g,Re,h e,15 Rd.f~g := Re.h~h+g-h+1
extracti Rd,E,L,M,N e,16 Rd := extri Rd di sz Rs si
getctl P Rd,c e,17 Rd := Sc
putctl P Rd,c e,18 Sc := Rd
resume P e,19 pc := ipc, status := istatus
timeron P Rd,efgh e,1a timer := efgh, enable := 1
timeroff P e,1b timer := 0, enable := =

e,1c reserved
. . . reserved
e,ff reserved

This is some plain text. This is some plain text. This is some plain text.
This is some plain text. This is some plain text. This is some plain text. This
is some plain text. This is some plain text. This is some plain text. This is
some plain text. This is some plain text. This is some plain text.

79



7 Assembly language
:CUSTOMID: sec-assembly-language

A computer is a digital circuit that executes programs in machine language,
which is hard for humans to read because it consists entirely of numbers. As-
sembly language provides a readable notation for writing machine language
programs. It uses names for instructions and variables, as well as other nota-
tions to make the code easier to understand.

An instruction in machine language is just one or more words (often writ-
ten in hexadecimal notation), while the corresponding instruction in assembly
language uses mnemonic names so the programmer doesn’t have to memorise
all the operation codes, addresses of variables, and so on. For example, the
assembly language statement mul R12,R3,R8 is more readable than the corre-
sponding machine language instruction 2c38. However, the assembly language
still gives the programmer complete control over every bit a program.

A programmer writes a machine-level program in assembly language. A
software application called the assembler reads it in and translates it to ma-
chine language. When it sees an instruction mnemonic like add or div, it
replaces it with the operation code (0, 3, or whatever). The assembler helps
with variable names — the machine language needs addresses (numbers) and
the assembler calculates them

• You can use names (add, div) rather than numeric codes (0, 3)

• You can use variable names (x, y, sum) rather than memory addresses
(02c3, 18d2)

• You write a program in assemply language

• The assembler translates it into machine language

Compilers and assemblers are similar in some ways: both of them translate
a program from one language to another. The main difference is that compilers
translate between languages that are quite different, while assemblers translate
between similar languages.

Example: a sequence of RRR instructions
Assembly language

add R3,R5,R1
sub R4,R2,R3
mul R1,R9,R10

Machine language

0351
1423
219a

80



7.1 Programs, modules, and files

Sigma16 has the flexibility required for "programming in the large". It provides
modules, separate assembly, import and export, relocation, linking, executa-
bles, and booting. It also has special conventions that enable the user to skip
those complications, and simply enter a standalone program, assemble it, and
run it. The system is straightforward for beginners but allows a transition to
realistic systems programming.

The assembler inputs a program in assembly language. This is called the
source module. The assembler outputs an object module that contains the
machine language code. The assembler also produces an assembly listing, which
presents the program in a form useful for the programmer. The assembly listing
shows the source code, the corresponding machine language, a symbol table,
and any error messages. Finally, the assembler outputs a metadata module
that enables the emulator to track the source statement corresponding to each
instruction.

A simple program consists of just one source module that does not import
anything. This is a standalone program, and assembling it produces an exe-
cutable program. An executable program is an object module that does not
require linking; it can be booted directly in the processor.

A larger program may consist of several source modules, including one main
program. This requires use of the linker to combine the collection of object
modules into a single executable program.

7.1.1 Standalone programs

If a program consists of just one source module that does not import any names,
it is standalone. There are several ways to input a standalone program: you
can choose it from one of the examples, load it from a file, or type it into the
editor. In all cases, the text of the program is shown in the editor pane. Go
to the Assembler pane and click Assemble. If there are no errors, go directly
to the Processor pane (you can skip the Linker) and click Boot. This will read
the machine language into the memory, and now you can run the program.

7.1.2 Modules

Large programs are easier to develop if you break them into separate modules
which can be assembled separately. One of the modules is identified as the
main module, and it imports the other modules. This allows you to define pro-
cedures, global variables, and symbolic constants in separate modules. Many
separate programs can reuse these modules simply by importing them.

The Sigma16 app maintains a Module Set describing all the modules that
it knows about. The usual workflow is to read in all the modules comprising
a program, and to assemble each of them. Then the linker combines all the

81



modules in the Module Set to form an executable. The executable can be
saved to a file, or it can be booted into the processor.

The Module Set is displayed in the Modules page. Key information about
each module is shown, including the first few lines of the source code. It is good
practice to begin every source module with two or three lines of comments that
identify the code, giving its name, purpose, author, and date.

The app maintains several invariants:

• At all times, there is at least one module. If you close the last remaining
module, a new one with empty source code is immediately created, to
ensure that there is at least one module.

• At all times, exactly one module is selected. The assembler always works
on the selected module. When you go to the Assemble page, the assem-
bler source code is set to the text of the selected module.

• At all times, the source code text of the selected module is displayed in
the editor window.

Each module in the Module Set has a module record that contains every-
thing the app knows about the module:

• (optional) the name of the module

• (always) the source code (which could just be an empty or blank string)

• (optional) the filename and file handle of the source code

• (if there is a file handle) whether the code in the file is stale (i.e. the
current source code has been edited and differs from the text in the file)

• (after assembly) the object code. Each module has an associated object
code, which may be empty. The object code can be produced by a
successful assembly (i.e. an assembly with no errors) or it can be obtained
from the Editor. This allows object code to be read from a file or entered
directly by the user.

• (after assembly) the assembly listing

• (after assembly) the metadata

1. Creating a module

• Launch. When the Sigma16 app is launched, it creates the initial
Module Set containing a module whose source text is the empty
string. This module is automatically selected, and it is not associ-
ated with a file. As always, you can see the source code text (which
is empty) by going to the Editor.

82



• Load example. You can open one of the Examples: Go to the Exam-
ples page, navigate through the index pages to one of the programs,
and select it. This will add a new module to the Module Set, select
it, and set its source code to the contents of the file. The object
code is set to empty.

• Read file. You can read a source file from your user space to create
a module. Go to the Modules page and click Choose Module. This
adds the result to the Module Set. The object code is set to empty.

• Editor: New. Go to the Editor page and click New. This creates
a new module whose name is Anonymous whose source text is the
empty string. The new module is selected and added to the Module
Set (you can see it by going to the Modules page). The previous
text in the editor page is not lost; it remains in the module that
had previous been selected.

2. Selecting a module

The Modules page shows which module is currently selected, and its
source text is visible if you go to the Editor page.

3. Changing a module

• Edit text.

• Save.

• Select.

4. Closing a module

• Close.

7.1.3 Modules page

• In Modules tab, click Choose Files

– The dialogue shows .asm.txt, .lnk.txt, .obj.txt, .md.txt

– To select all the relevant files in a directory, click the little box at
the left on the row giving "Name, date modified, . . . "

– Click Open (or cancel)

7.1.4 Editor page

Editor operations on files and modules
Each operation that changes the editor buffer (New, Open, Close) checks

first to see whehter the buffer has been changed since it was last saved. If so,
a dialogue asks whether the file should be saved.

83



• New – Check whether text in the editor buffer has been saved; if not,
ask whether to save it. Create a new module with empty text and no
file name, add it to the module set, and select it as the current module.
Clear the text in the editor buffer.

• Open – Check whether text in the editor buffer has been saved; if not,
ask whether to save it. Enter the open file dialogue where an existing
file can be found by navigation or by typing in its name. If the dialogue
is cancelled, the module set and editor buffer are left unchanged. If a
file is selected in the dialogue, and it is already in the module set, then
it is selected in the current module. Otherwise, a new module is created
with the file’s contents, and is selected as the current module. and The
file is loaded into the editor buffer and added to the module set.

• Refresh – The file corresponding to the current module is read, and its
contents are loaded into the editor buffer.

• SaveAs – Enters the save file dialogue where the directory and file name
can be chosen. The editor buffer is written into this file.

• Save – Writes the editor buffer into the current file and directory. If either
the module name or directory is not known, this reverts to a SaveAs.

• Select – Opens a list of all modules; you can click one of them which is
then set as the current module.

• Close – Check whether text in the editor buffer has been saved; if not,
ask whether to save it. The module is removed from the module set,
and the editor buffer is cleared. The first module (module number 0) is
selected as the current module, but if there is no module at all, an empty
module is created and selected as current (in effect, if there is only one
module and you close it, an automatic New is performed).

• Example – Reads in a simple example program and sets it as the current
module. This is a standalone program; you can simply click Editor:
Example, then Assembler: Assemble, then Processor: Boot, and run the
program. This example is used in the first "getting started" tutorial. The
example program is also available in the Examples directory, accessible
through Editor: Open.

Select is for switching among the existing modules, while New and Open
are for introducing a new module.

7.1.5 Files

A source module may be stored in a file, although this is not required. The
assembler will produce several objects, which can also be stored into files.

84



There is a standard convention for Sigma16 filenames. All filenames end
with a two-part extension, such as .asm.txt. The first part (.asm) tells
Sigma16 what kind of information the file contains, and the final part (.txt)
enables the computer you’re running on to interpret the file as plain text. If
you have a program named MyProgram, then the files associated with it must
be named as follows:

Description Language Filename
source code assembly language MyProgram.asm.txt
object code object language MyProgram.obj.txt
assembly listing plain text MyProgram.lst.txt
metadata plain text MyProgram.md.txt

The first part of the filename (MyProgram) is the base name, and is the same
for all the files for the module. The last part (.asm.txt) is the extension.

A filename can be specified either as a full path (the unique identifica-
tion of the file (C:\\Users\...\prog.asm.txt), or as just a filename (mypro-
gram.asm.txt) which is relative to the current directory.

To edit a file, the modDir and modName are both optional. An edited file
may have a module name specified with a module statement. To read or save
a file, both the module directory and name must be known.

There are two ways to read in a file:

• Go to the Examples page, navigate to one of the examples, and open it.
This will create a new module record and read the .asm.txt file into the
source code for that record. The object, assembly listing, and metadata
for the module record are set to the empty string.

• Go to the Modules page, click Choose File, and navigate to a source file
anywhere in your file space. Selet that file, and it will be read into the
source code for a newly created module record.

7.2 Fixed and relocatable values

A value is a 16-bit word. An assembly language program uses expressions to
denote values, but the actual underlying quantity is a value. A value consists
of a word and several attributes:

• word is a natural number in the range from 0 to 216-1.

• origin

– if origin=Local, the value is defined within the module

– if origin=External, the value is imported from another module

• movability

85



– If movability=Relocatable, the value must be adjusted by the relo-
cation constant when the module is relocated

– If movability=Fixed, the value is not affected during relocation

7.2.1 Expressions

An expression is syntax that denotes a value.
A name must begin with a letter (a-z or A-Z), and may contain letters,

digits, or underscore characters.
Constants can be written in decimal, hexadecimal, or binary:

• Decimal constants consist of a sequence of digits, with an optional
leading - sign. Examples: 42 55039 -1

• Hexadecimal constants are written with a dollar sign $ followed by
four hex digits (0 1 2 3 4 5 6 7 8 9 a b c d e f). Examples: $0249 $c78a

• Binary constants are written with a hash sign # followed by any num-
ber of 0 or 1 characters. You can write fewer than 16 bits; they will be
padded on the left with zeros. Examples: #1101 #000100000001101

Expressions may contain arithmetic operators + - * /.

operand operator operator result
fixed + fixed fixed
fixed + relocatable relocatable
relocatable + fixed relocatable
relocatable + relocatable error
fixed - fixed fixed
fixed - relocatable relocatable
relocatable - fixed relocatable
relocatable - relocatable fixed
fixed * fixed fixed
fixed * relocatable error
relocatable * fixed error
relocatable * relocatable error
fixed / fixed fixed
fixed / relocatable error
relocatable / fixed error
relocatable / relocatable error

relocatable
An expression can do arithmetic on a local label, but not on an imported

name. The reason is that arithmetic requires that the value of the name is
known. That’s why an expression like a equ rcd+5 can be used only after
the label rcd is defined: it enables the value of each name to be calculated

86



during pass 1. But the values of imported names are not known at all during
assembly; they become defined only during linking. Such a value can affect
the values of words in the object code, but not their locations.

An expression is assembly language syntax that, when evaluated, denotes
a value (i.e. a 16-bit word). Evaluation takes place entirely at assembly time.
Expressions may be labels, constants, or may be calculated.

7.2.2 Location counter

The assembler maintains a variable called the location counter, which is the
address where the next word of object code will be loaded. The location
counter is a local value. It is initialized to 0000 Relocatable.

When an instruction word or data word is generated, its address is set to
the current value of the location counter, which is then incremented.

The org directive specifies a new value of the location counter. First the
operand of the org statement is evaluated. This value must be local (it is an
error if the value is external). The location counter and its movability are set
to the value and movability of the operand.

7.2.3 Attributes

A machine language program consists of words stored in memory at particular
addresses. A word is just a collection of 16 bits; it has no type.

An assembly language program specifies all the words that comprise a pro-
gram. In principle you could just write out all the words as numbers, but this
is difficult and prone to errors. Thw whole point of assembly language is to
provide notations that make it easier to specify these numbers, while retaining
total control—every single bit in the object code is determined by the assembly
language.

A value is a word of 16 bits. Values do not have types; their type depends
entirely on usage. Values may be used in generating object code, either as the
displacment field of an RX instruction or as the operand of a data statement.

Every value is either fixed or relocatable. If a module is linked, then its
relocatable values may be translated, but the fixed values remain unchanged.

7.3 Code generators

Each line of source code is an assembly language statement. Unlike higher
level languages, assembly language statements are not nested. There are three
kinds of assembly language statement:

• Comments (blank lines, or lines beginning with ;)

• Code statements define instructions or constant data

• /Directives provide metadata but don’t generate any code

87



An assembly language statement contains one or more fields. A field con-
sists of non-space characters (with one exception: a space may appear in a
string literal). Fields are separated from each other by one or more white
space characters.

• Label. The label field is optional. If present, the label must be a name
and it must begin in the first character of the line. If the first character
is a space, then that line has no label.

• Operation. The operation field is an identifier that specifies an instruc-
tion or assembler directive. It must be preceded by one or more white
space characters. Every statement (apart from a full line comment) must
have an operation field.

• Operands. The operands field specifies operands for an instruction or
arguments for assembly directives. There may be several operands, which
must be separated by commas. Each type of statement (determined by
the operation field) requires a specific syntax for the operands. Most
instructions and assembler directives require operands, but some do not.

• Comment. All text that either (1) follows white space after the operands
field, or (2) follows a semicolon (;), is a comment, and is ignored by the
assembler. If one or more of the other fields (label, operation, operands)
is missing, the comment must be preceded by a semicolon to prevent it
from being interpreted as operands. The rule is: all text after a semicolon
is a comment, and all text after white space following operands is a
comment. A statement where the first non-space character is a semicolon
is a full line comment. If the statement has no operands, then all text
after the operation field is a comment. It is good practice always to begin
a comment with a semicolon.

7.3.1 Instructions

Assembly language statements generally correspond to the instruction formats,
but there is not an exact correspondence for several reasons:

• Sometimes an instruction is written in assembly language with a field
omitted which exists in the machine language code but is ignored. For
example, the instruction cmp R1,R2 generates an RRR instruction,
but the third operand field is omitted because the instruction requires
only one operand, not two. The assembler sets the unused operand to
0, but the machine ignores it. This is called a "don’t care" field in the
instruction.

• Sometimes two instructions look the same in assembly language but
use different machine language instruction formats. For example, add

88



R1,R2,R3 and push R1,R2,R3 look similar, but add uses the RRR in-
struction format and push uses the EXP instruction format. The reason
for this is that there are not enough bits in the op field to accommodate
all the instructions with three register operands, so an expanding op-
code is used. Thus push is represented with op=14, indicating EXP
format, and the EXP variant is used for this instruction.

• The 4-bit fields are sometimes used to denote a register from the register
file (R3), or a control register (mask), or a constant . In assembly lan-
guage the constants are written just as a number (e.g. shiftl R1,R2,5).
Control registers are written by name rather than their number in the
control register file (e.g. getctl R3,mask).

• Some assembly language statements are pseudoinstructions. These
are special cases of more general instructions. For example, and is a
pseudoinstruction which generates a logicw instruction specialised to
perform a logical and.

Table: Assembly language statement formats

afmt operand general form example notes
RRR Rd,Ra,Rb add R1,R2,R3
RR Ra,Rb cmp R1,R2
RX Rd,disp[Ra] load R1,xyz[R2]
kX k,disp[Ra] jumpc0 6,loop[R2] 0 <= k <= 15
RRRk Rd,Ra,Rb,K[Re] save R1,R5,3[R14] 0 <= K <= 255
RRk Ra,Rb,k shiftl R1,R2,5 0 <= k <= 15
Rkkkk Rd,e,f,g,h logicr R1,
RkkRk Ra,j,n,Rb,k extract
RC Rc,Rd putctl vect,R4

Label Statement Operands Purpose
optname data exprs generate word for each exp

RRRop r,r,r
RXop r,exp[r]
RRop r,r
Rop r
RRKKop r,r,k,k

89



Asm instruction operands ML formats
RRR add Rd,Ra,Rb RRR
RX lea Rd,disp[Ra] RX
RR inv Rd,Ra RRR (b ignored), RREXP
JX jump disp[Ra] RX (b ignored)
KX jumpc0 d,disp[Ra] RX (d is constant)
RRK shiftl Rd,Ra,k EXP
RkkRk extract Rd,e,f,Rg,h EXP
RCEXP getctl Re,Cf EXP

An EXP instruction may use the fields op, d, ab, e, f, g, h. The g and h
fields can be combined into a single 8-bit field gh All EXP instructions combine
the a and b fields into a single 8-bit field called ab. Some EXP instructions
combine the g and h fields into a single 8-bit field called gh. The EXP format
has the following variants.

• The RREXP format takes two register operands, which are in the e and
f fields of the second word. The d field of the first word and the g and
h fields of the second word are ignored (the assembler will set these to
0). Any RREXP instruction could be reprsented as RRR, but there are
only a few RRR opcodes avaiable, so uncommon instructions that require
two registers are represented as RREXP. Example: execute R5,R6 is
RREXP.

• The RCEXP format takes two register operands; the first is a general
register and the second is a control register. An example of the operand
field is R3,mask. The operands are in the e and f fields of the second
word. The d field of the first word and the g and h fields of the second
word are ignored (the assembler will set these to 0.) The first operand
is an element of the register file (for example, R4). The second operand
is a control register, which is specified by a 4-bit number. In assembly
language, we normally refer to the control registers by name rather than
number, to make it easier to remember which is which. For example,
getctl R3,status has RCEXP format.

• The RRREXP format takes three register operands, which are in the f,
g, and h fields of the second word. An example of the operand field is
$R1,R2,R3*. The d field of the first word and the e field of the second
word are ignored (the assembler will set these to 0). The RRREXP
instructions would be a natural fit for the RRR format, but there are
not enough RRR opcodes available, so the EXP format is used to expand
the number of instructions that can be represented. For example, push
R5,R8,R9 has RRREXP format.

• The RRKEXP format takes two register operands and a 4-bit constant
number. An example of the operand field is R1,R2,13. The register

90



operands are in the f and g fields of the second word, and constant is in
the h field of the second word. The d field of the first word and the e
field of the second word are ignored (the assembler sets these to 0). For
example, shiftr R3,R6,7 has RRKEXP format.

• The RRKKEXP format takes two register operands and two 4-bit con-
stant binary number operands. The register operands are in the e and
f fields of the second word, while the two constants are in the g and h
fields. The d field of the first word is ignored (the assembler sets it to 0).

• The RRXEXP format takes two register operands as well as a memory
address specified with an 8-bit offset and index register. Thus these in-
structions require three registers to be specified, as well as the offset.
Thus every bit of both instruction words is needed to represent an RRX-
EXP format instruction. In assembly language, the memory address is
written as offset[Rh] where offset is an -bit binary number and Rh is
a register. The effective memory address is offset+Rh. This is sim-
ilar to ordinary memory addresses; the only difference is that it uses
an 8-bit offset rather than a 16-bit displacement. For example, save
R1,R9,2[R14] has RRKEXP format.

Expressions, values and relocatables

• An expression is syntax: 23, -5, $b23e, struc+5, arrEnd-arrStart

• A value denotes a word (it is a number) and is the result of evaluating
an expression

• A value is marked as either relocatable or fixed

• Expressions may occur in

– Displacement field of an assembly language statement; the value of
the expression is placed in the displacement field of the correspond-
ing machine language instruction.

– If a displacement value is relocatable, its address is recorded in the
list of addressess of words to be relocated

– Right hand side of an equ statement. The value may be fixed or
relocatable. The name (the left hand side) is defined as a new
identifier, the definition line is the line containing the equ, the value
is the evaluation of the right hand side, which may be either fixed
or relocatable. Identifiers used in the expression on the RHS have
the line number included in their usage lines.

– But identifiers that appear in an expression (even if relocatable) are
not recorded in the relocation list; only displacements are placed in
the relocation list.

91



1. Instruction set

The following sections describe the instructions in groups organized by
their function. Some of the groups contain instructions with different
formats. From the programmer’s perspective the function is more im-
portant, so these groups are useful in finding the right instruction to
use. (From the perspective of designing a digital circuit to impleemnt
the architecture, the format is essential.)

7.3.2 Pseudoinstructions

7.3.3 data

The data statement specifies a sequence of constants to be placed in consecutive
memory locations starting at the location counter, subject to relocation. Its
argument is a list of one or more 4-digit hex constants separated by commas.

A long block of data can be broken up into several data statements. Sup-
pose x1, x2, etc are 4-digit hex constants. Then

data x1,x2,x3,x4,x5,x6

is equivalent to

data x1,x2,x3
data x4,x5,x6

Suppose

• The module’s relocation constant is r

• The location counter has been set to c

• The i’th constant (counting from 0) in a data statement is x.

Then the linker will set mem[r+c+i] := x.
One point to watch out for is that an assembly language data statement

uses $ to indicate that a number is a hex constant (e.g. $03b7) but the object
language data statement requires all numbers to be 4-digit hex constants, and
does not require (or allow) a preceding $ character

7.4 Directives

A directive is an assembly language statement that gives further information
about how to translate the program to object code and how to link the code
with other modules. Directirves specify metadata but they don’t generate an
instruction or constant data.

92



Statement Label Operands Purpose
identifier module Define name of module

org expression Set location counter
identifier equ expression Define value
identifier import identifier,identifier Import value from module

export identifier Export values

7.4.1 module

A program may be organized as a collection of modules, where each module
appears in a separate file. When several modules are present, each one needs a
unique name. The module statement declares the name of the module, which
is specified in the label field. There are no operands. The following statement
says that this is the object code for module named abc:

abc module

A module statement is optional. If none is present in a file, the module
is anonymous. If a file does contain a module statement, it must be the first
statement in the file, although it may be preceded by comments and blank
lines. It is illegal for a file to contain more than one module statement.

An anonymous module can import other modules, but other modules can-
not import anything exported from an anonymous module. This means, in
effect, that an anonymous module is useful only as a main program.

It is good practice for the main program to have a module statement; in
effect, this is the name of the program as well as the name of the module.

An assembly language file should have a name of the form basename.asm.txt.
If there is a module statement modname module, then basename should be
modname. For example, the file Heapsort.asm.txt might contain the statement
Heapsort module. If there is no module statement, basename is arbitrary.

7.4.2 import

The import statement states that the value of an identifier is defined in an-
other module. During the assembly of the module containing the import, the
identifier is given a provisional value of 0, but this will be replaced by the
actual value by the linker. For example,

x import Mod1,x
y import Mod1,abc

says that x is a name that can be used in this module, but it is defined in
Mod1; y can be used in this module but it is defined in Mod1 under the name
abc.

93



7.4.3 export

An export statement says that the module is making the value of a symbol
available for use in other modules, which may import it. The statement takes
two operands: the name being exported and the value, which must be a 4-digit
hex constant. It makes no difference whether the name is relocatable, as the
linker performs any relocation before writing the exported value into other
modules that import it. Examples:

export haltcode,0
export fcn,002c

The export statement states that the value of an identifier should be made
available for other modules to import. For example, this module defines a
function and exports it so other modules can import and call it:

Mod1 module
export fcn

fcn add R1,R1,R1
jump 0[R12]

** Assembly listing
The first section of the assembly listing shows each line of the source pro-

gram. The line number appears first, followed by the memory address that
the instruction on this line will be placed in. The address is given as a 4 digit
hexadecimal number, and it is binary (not two’s complement). Next comes
the machine language code generated by the line of source code. If the line
contains a two-word instruction, there will be two 4-digit hexadecimal values;
for a one-word instruction there will be one hex number, and if the line doesn’t
produce any code these fields will be blank. After the code, the original source
statement appears.

The second section of the assembly listing is the Symbol Table. This
shows each identifier (or "symbol") that appears in the program, the address
allocated for the symbol, the source code line where it was defined, and the
source code lines where it was used.

7.4.4 equ

codeWrite equ 2
codeRead equ 1

The expression in an equ can calculate the size of an object:

astart data 5
data 9
data 78

aend
asize equ aend-astart

94



7.4.5 reserve

The reserve statement has one operand, which is a numeric constant. The
assembler increments the location counter by the value of the operand.

This can be used to reserve a block of memory, for example to hold a stack
or heap data structure.

asize equ 100
n reserve asize

If the operand of a reserve statement is a symbol defined by an equ, that
definition must precede the reserve statement. This is because pass 1 of the
assembler needs to calculate the address of each code word, and an equ that
follows the reserve statement would not become known until after the size of
the reserve is needed.

7.4.6 org

The org statement sets the location counter to a specified address. Subsequent
instructions and data will be placed in memory at contiguous locations starting
from that address.

org 35 ; subsequent code starts from address 0023

The assembler initializes the location counter to 0 before it begins trans-
lating an assembly language module. Every module begins implicitly with org
0.

8 Object code and linker
Small programs often consist of just one module (or file). The assembler trans-
lates the assembly language source code into machine language which is then
executed by the processor.

However, there are several reasons for breaking up larger programs into
several modules. It’s easier to work with several modules of reasonable size
rather than one gigantic file. A module may provide generic services that can
be incorporated into many programs. Programs can be simplified if they use
libraries for common tasks, rather than implementing everything from scratch.
It is faster to assemble small files than large ones.

When a program consists of several modules, each one can be assembled
separately. However, the resulting machine language is not executable if it
refers to procedures or other values defined in another module. An instruction
in module A cannot refer to a word X in module B unless it knows the address
of X, and when module A is assembled it knows nothing about module B.

95



To produce an executable program, its modules need to be combined into
a single executable module, with all the addresses resolved. This is called
linking.

Sigma16 supports linking. The system is designed so that programs that
consist of just one standalone module can be executed directly, without linking.
This means you can ignore the issues of modules and linking if you just want
to write a andalone program.

8.1 Object language

Object code is expressed in a textual language, so the object code is readable
by a human (at least, by a human who understands machine language). For
example, binary data is specified using four hexadecimal characters rather than
a word of binary data.

8.1.1 Object statement syntax

The object language has a simple syntax and only a few types of statement.
Each object statement is written on one line. It begins with a keyword indi-
cating the type of statement, followed by one or more spaces, followed by an
operand field which must not contain any white space. The operand field is
a comma-separated list of tokens; each token is either a hex constant or an
identifier.

• In the object language, hex constants are written as four characters,
using digits 0-9 a-f. Unlike assembly language, a hex constant is not
preceded by $. There is no need for this, as all numbers are written
in hex in object code. Assembly language allows both hex and decimal
numbers so there needs to be a way to tell them apart.

• Identifiers have the same syntax as in assembly language: a string of
letters, digits, and underscore characters, beginning with a letter.

The object language has seven statements: module, org, data, import,
export, and relocate. Some of these are related to corresponding statements
in assembly language, but their syntax is different and in some cases they may
contain different information.

8.1.2 module

8.1.3 org

8.1.4 data

data x0,x1,. . . ,xj-1

Let xs be the list of j words in a data statement, and llc is the linker location
counter. For each word x, the linker performs:

96



mem[llc] := x
llc := llc + 1

8.1.5 import

General form

import modName,externalName,address,field

Examples

import Mod2,abc,03c4,dist
import Mod3,ybit,03be,g

8.1.6 export

8.1.7 relocate

The relocate statement specifies a list of addresses of words that must be
relocated. Suppose the value x is specified in a relocate statement, and the
linker is relocating the module by offset y. Then the linker will set mem[x+y]
= obj[x]+y.

relocate hex4,hex4,...

General form:
The relocate statement specifies a list of addresses, which refer to object

code words in the module. The effect is to add the linker location counter (llc)
to each object code word.

code[addr] := code[addr] + llc

relocate addr,addr,...,addr

Each location is relcated. The word The addresses

8.2 Module metadata

The assembler and linker create metadata files which enable the emulator
to show the assembly language statement corresponding to the instruction
currently being executed. The metadata is not part of the machine language,
and the emulator doesn’t look at it in order to execute the program. It is
entirely optional: the emulator can run a program without any metadata,
although without it the emulator cannot display the current assembly language
source statement. This section explains how the metadata works and the
format of the files.

The emulator attempts to show the assembly language source as the pro-
gram runs, and it highlights the current and next instruction. To do this, the

97



emulator needs to have some information that isn’t present in the object code.
This extra information is supplied in a separate metadata file produced by the
assembler and the linker.

An object file foo.obj.txt may have a corresponding metadata file foo.omd.txt
("object metadata"). An executable file foo.exe.txt may have a corresponding
metadata file foo.xmd.txt ("executable metadata"). The format of the meta-
data is identical for object and executable; the reason for the distinction is
that the user might have a program with main program foo.asm.txt, and later
give the executable the same name foo. In that case, there will be separate
metadata files for the object and the executable.

The metadata contains the source code in two forms: plain text and with
html tags for highlighting the fields. In addition, the metadata contains a
mapping from address to source code line number.

The metadata file format is parsed in order to populate several data struc-
tures that enable the emulator to The metadata contains the lines of text of
the assembly listing. These lines contain the address, the object code at that
address, and the assembly language source statement. Each line of the assem-
bly listing appears t The emulator displays most lines of the assembly listing
with the same field highlighting

A metadata file contains two sections: the ASmap followed by the source
listing text. A metadata file must have the following contents:

a0, s0, a1, s1, a2, s2, ..., an−1, sn−1

When the pc contains address ai then the source statement si should be
displayed.

• fsmap n

• comma separated list of n numbers, which may be split into lines

• source n

• n lines of html giving the assembly listing. Each line appears twice: first
a "plain" form, followed by a "decorated" form that contains html span
elements for highlighting the fields of the text

Here is an example of a metadata file:

fasmap 17
14,14,15,15,16,16,17,17,18,19
19,20,20,21,21,22,24
source 32
<span class=’ListingHeader’>Line Addr Code Code Source</span>
<span class=’ListingHeader’>Line Addr Code Code Source</span>

1 0000 ; Main: test linker
1 0000 <span class=’FIELDLABEL’> ... </span>

98



8.3 Linker

• GUI: selected module is main program and also receives the executable.
All other modules are linked, and their object code is placed after that of
the selected module. It is an error if any module has not been assembled.
The order of the object code depends on the order of the modules in
the module list, which is essentially arbitrary, except that the selected
module always comes first in the executable.

8.4 Booter

8.4.1 Executable code

An executable module is written in the same language as object modules. The
only difference is that an executable module must contain only these types of
statement: module, data, org. It is now allowed to contain any of the following
statments: import, export, relocate.

If an assembly language program doesn’t contain any import or export
directives, then its object code won’t contain any import, export, or relcate
statements. In this case, the object code is already executable and does not
require linking: it can be booted directly by the processor.

The booter (invoked by clicking the Boot button in the processor page)
reads in the currently selected module and checks to see whether it is a valid
executable module. If so, it loads the code into the memory. If not, it indicates
that the program cannot be booted.

9 Programming

9.1 Structure of a program

Simple ("static") variabls need to be declared with a data statement, which
also gives an initial value.

x data 23

This means: allocate a word in memory for x and initialize it to 23. The
data statements should come after the trap instruction that terminates the
program

9.2 How to perform commmon tasks

9.2.1 Using extract

A special case is to move a Boolean from one place to another.

• A Boolean is a bit in a register, so it takes two 4-bit fields to specify an
arbitrary Boolean

99



• Would like to make it easy to implement b := c, where b and c are
arbitrary Booleans

• This would require two 4-bit fields for each of b and c, for a total of four
4-bit fields

• The Exp format could accommodate this

• But this could also be done using the extract instruction

• Therefore it should either be omitted, or else be a pseudo instruction
that generates an extract

The extract instruction is not essential: it can be performed by a sequence
of shift and logic instructions. However, an extract instruction is faster than
the equivalent sequence of shifts and logic, and it also makes a program more
readable by making the intention clear.

Pseudoinstruction
Copy a bit
Invert a bit
Generate a field mask
The field pseudoinstruction loads a word into the destination register Rd;

this word consists of 1 bits in the specified field (g,h) and 0 in all other bit
positions. This provides a field mask that can be used with logic instructions
for a variety of purposes.

• General form: field Rd,g,h

• Pseudo-instruction: injecti Rd,R0,g,h

• Assembler format: RKK

Semantics

• Rd.i = 1 for g <= i <- h

• Rd.i = 0 for i < g or i > h

Example:

field R3,4, ; R3 := 0fc0

Using a field mask

• invert it to give negative mask

• and R1 with mask to clear bits outside the field

• and R1 with negative mask to clear only the field

• xor R1 with mask to invert bits in the field

100



9.2.2 Copying one register to another

Sometimes you want to copy a value from one register to another: R3 := R12.
There isn’t an instruction specifically for this purpose, because there is no
need: just use the add instruction:

add R3,R12,R0 ; R3 := R12

Since R12 + 0 = R12, this copies the value in R12 into R3. One might
think that this is less efficient than having a special instruction to perform the
copy, but it actually turns out to be more efficient to do it this way!

9.3 Compilation

There are two ways to handle variables:
The statement-by-statement style: Each statement is compiled indepen-

dently. The pattern is: load, arithmetic, store. Straightforward but inefficient.
The register-variable style: Keep variables in registers across a group of

statements. Don’t need as many loads and stores. More efficient. You have
to keep track of whether variables are in memory or a register. Use comments
to show register usage. Real compilers use this style. Use this style if you like
the shorter code it produces.

We’ll translate the following program fragment to assembly language, using
each style:

x = 50;
y = 2*z;
x = x+1+z;

Statement-by-statement style

; x = 50;
lea R1,$0032 ; R1 = 50
store R1,x[R0] ; x = 50

; y = 2*z;
lea R1,$0002 ; R1 = 2
load R2,z[R0] ; R2 = z
mul R3,R1,R2 ; R3 = 2*z
store R3,y[R0] ; y = 2*z

; x = x+1+z;
load R1,x[R0] ; R1 = x
lea R2,1[R0] ; R2 = 1
load R3,z[R0] ; R3 = z
add R4,R1,R2 ; R4 = x+1
add R4,R4,R3 ; R4 = x+1+z
store R4,x[R0] ; x = x+1+z

101



Register-variable style

; Usage of registers
; R1 = x
; R2 = y
; R3 = z

; x = 50;
lea R1,$0032 ; x = 50
load R3,z[R0] ; R3 = z
lea R4,$0002 ; R4 = 2

; y = 2*z;
mul R2,R4,R3 ; y = 2*z

; x = x+1+z;
lea R4,$0001 ; R4 = 1
add R1,R1,R4 ; x = x+1
add R1,R1,R3 ; x = x+z
store R1,x[R0] ; move x to memory
store R2,y[R0] ; move y to memory

Comparison of the styles
Statement by statement.

• Each statement is compiled into a separate block of code.

• Each statement requires loads, computation, then stores.

• A variable may appear in several different registers.

• There may be a lot of redundant loading and storing.

• The object code corresponds straightforwardly to the source code, but it
may be unnecessarily long.

Register variable

• The instructions corresponding to the statemnts are mixed together.

• Some statements are executed entirely in the registers.

• A variable is kept in the same register across many statments.

• The use of loads and stores is minimised.

• The object code is concise, but it’s harder to see how it corresponds to
the source code.

• It’s possible to have a mixture of the styles: you don’t have to follow one
or the other all the time.

102



9.4 Errors: avoiding, finding, and fixing

9.4.1 Critical regions

A testset instruction is not semantically equivalent to a load followed by a
store. Consider this example:

; (1) testset
testset R1,mutex[R0]

It is not the same as

; (2) sequence of instructions
load R1,mutex[R0]
lea R2,1[R0]
store R2,mutex[R0]

The essential difference is that (1) executes as an atomic operation, but (2)
does not, and this could lead to errors in mutual exclusion, which could lead
in turn to fatal errors, crashes, and security violations.

Consider, for example, a situation where two processes are sharing mutex
to control access to a critical retion.

an interrupt could occor after the load and before the store. Suppose,
for example, that initially mutex = 0 and the sequence is executed. Another
process could be performing a similar sequence of instructions on the same
mutex variable.

9.4.2 Robust programming

*Use a systematic programming process

• Start with a high level algorithm

• Then translate that to the low level ("if b then goto label") form

• Translate the low level to assembly language, keeping the higher level
versions as comments

Use comments both to develop the program and to document it

• Write the comments first, as you develop the program. There should
already be some good comments (e.g. the algorithm) before any instruc-
tions at all have been written.

• Don’t fall into the trap of hacking out instructions and then adding
comments later: this loses the benefits that documention offers as you’re
writing the code.

103



How to write good comments

• Keep the high level and low level algorithms as comments

• Comment each instruction

• Use the comments to explain what your program is doing, not to explain
what an instruction does.

• Assume that the reader already knows the language, but not the details
of your program.

9.4.3 Error messages

9.4.4 Runtime debugging

What if an instruction doesn’t do what you expected?

• Execute the program to the point where the mysterious instruction is
about to be executed, but has not yet executed. (To do this, you can
step through the program, or set a breakpoint.)

• Make sure you know what the instruction is supposed to do (check the
User Guide).

• Looking at the state of the registers and memory, carefully predict what
you expect the instruction to do.

• Execute the one instruction (click Step) and compare the state of the
machine with your prediction.

• Make sure the instruction has not been modified in memory. Compare
the machine language produced by the assembler with the current con-
tents of the word or words in memory where the instruction is located.

9.4.5 Breakpoints

(Note: the breakpoint system is not fully implemented yet; the fol-
lowing describes a temporary breakpoint facility.)

A breakpoint is the address of an instruction; when the machine is about to
execute that instruction (i.e. when the pc contains that address) the emulator
will halt execution, enabling the programmer to examine the state of registers
and memory. To set a breakpoint, click Breakpoint and enter the instruction
address you want to stop at in the dialogue box. There are several control
buttons. Refresh means "read the contents of the text in the box, which must
be a $ followed by a 4 hex digit address". Whenever you change the text,
you should click Refresh. The Enable button toggles the breakpoint on and
off. The Close button hides the Breakpoint dialogue box. Here’s an example.
Suppose you want to stop execution of a program at address 00f6:

104



• Click Breakpoint

• Enter $00f6

• Click Refresh

• Click Enable

• Click Close

• Click Run

The execution will run until the pc becomes equal to 00f6 and will then
stop.

Click Refresh, then Enable, then Close. Then click Run, and the emulator
will run at full speed until the pc reaches the specified value; then it will stop
so you can examine the state of the machine.

10 Installation
You can run most of Sigma16 in a web browser – there’s nothing to download,
nothing to install. Visit the [Sigma16 home page](https://jtod.github.io/
home/Sigma16/) in your browser and click on the link to launch the app. It will
run in your browser; you don’t have to install anything. The Home page also
contains links to the source code and further information about the project.

10.1 Command line tools

Sigma16 also contains some advanced features that use the command line in
a shell. These features include text commands for assembling and linking
programs, and for running the circuit simulator. These features require some
software installation. In addition, building Sigma16 from soure requires some
additional software that must be installed. All of the software required is free
and open source, and all of it runs on Windows, Macintosh, and Gnu/Linux.

10.1.1 node and npm

10.1.2 Configuring the shell

Shell running bash
Add the following to your .bashrc file, but replace Users//yourlogin/Documents/path/to

with your own file location. In a bash shell running on cygwin, try /Users/yourlogin.

SIGMA16=/Users/yourlogin/Documents/path/to/SigmaProject/Sigma16
export SIGMA16
alias helloworld="node ${SIGMA16}/app/helloworld.js"

105

https://jtod.github.io/home/Sigma16/
https://jtod.github.io/home/Sigma16/


10.1.3 Testing the installation

$ node --version
v16.5.0

10.1.4 Building Sigma16

The Web version of Sigma16 contains several files that need to be built from
source. Of course, if you launch the app from the Sigma16 Home Page you
don’t need to worry about that: you get a fully-built version.

Use emacs to build *.html from source *.org

^C ^E h h

$ npm install -g wabt
$ wat2wasm emcore.wat --enable-threads

11 About Sigma16

11.1 Copyright and license

The architecture, software tools, and documentation were designed, imple-
mented, and written by John O’Donnell. Contact email: john.t.odonnell9@gmail.com

Copyright (C) 2020, 2021 John T. O’Donnell
License: GNU GPL Version 3 or later. The full text of the GPL-3 license

is given below.
Sigma16 is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version. Sigma16 is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a
copy of the GNU General Public License along with Sigma16. If not, see
https://www.gnu.org/licenses/.

11.2 In case of problems

If you encounter a problem with the app, please file a bug report. It is essential
in a bug report (for any software, not just Sigma16) to provide as much as
possible of the following information.

• State what version of the software you are running. This is visible in the
Welcome page, as well as the User Guide and the Options page.

106

https://www.gnu.org/licenses/


• State what browser and operating system you are using. There are some
incompatibilities between Chrome, Firefox, Edge, and Safari, as well as
differences between operating systems.

• Describe what the problem was.

• Provide the source code of the assembly language program you are run-
ning.

• If possible, provide some photos or screen shots showing the app at the
point where the problem arose. Smartphone photos are fine. Try to show
the processor display, including the registers.

11.3 Release notes

11.3.1 Version 3.5.0, January 2023

• No change to the Core instruction set

• revised the Standard instructions, some changes to representation

• added family of branch instructions

11.3.2 Version 3.4.0

• Bit indexing is changed to "little end" style. The least significant bit has
index 0, and the most significant bit has index 15.

• The architecture is organized into precisely defined subsets: Core and
Standard

11.3.3 Version 3.3.2, April 2021

• There is no change in the architecture

• The software is modified to enable it to continue working when a planned
change to web browsers occurs in May 2021. The program runs on a
hosted web server that enables it to work fully with cross origin isolation.

11.3.4 Version 3.2.3, development from April 2021

11.3.5 Version 3.2.2, March 2021

• A bug in breakpoints is fixed

• In addition, there is a new way to specify breakpoings using trap

• When the emulator stops, the memory display is correct; you no longer
need to refresh it

107



11.3.6 Version 3.2.1, February 2021

Version 3.2 brings several changes that will be visible to users of previous
versions of Sigma16:

• cmplt, cmpeq, cmpgt are removed. Instead, use the cmp instruction, which
sets the condition code (R15), and then use any of the conditional jump
instructions jumplt, jumple, jumpeq, jumpne, jumpge, jumpgt. (Ratio-
nale: There are more Booleans in the condition code than just less-than,
equal, and greater-than. The new style accomodates all the conditions
in a uniform manner, but the old style does not. Version 3.1 already
supported cmp and the conditional jumps.) Here’s an example:

; Old style -- these instructions have been removed
cmplt R1,R2,R3 ; R1 := R2 < R3
jumpt R1,loop[R0] ; if R2 < R3 then goto loop

; New style -- use the following instead
cmp R2,R3 ; compare R2 with R3
jumplt loop[R0] ; if R2 < R3 then goto loop

• jumpf is renamed to jumpz, and jumpt is renamed to jumpnz. The new
names stand for jump if zero and jump if not zero. Most old programs will
use jumpf or jumpt only after cmplt, cmpeq, or cmpgt, but following cmp
you should use one of the conditional jumps listed above. (Rationale:
The new names reflect more accurately what the instructions actually
do. The decision about whether to jump depends on whether the entire
register contains 0; it isn’t a decision based on checking just a single bit.)

The following changes do not require modifying old programs; they just
relax the syntax rules so some programs would no longer give an error message.

• [R0] is optional. In previous versions of Sigma16, every displacement
requires the index register to be stated explicitly, even if it’s R0: for ex-
ample, load R3,xyz[R0]. Now, the [R0] can be omitted, although you
can include it if you wish. Thus load R3,xyz and load R3,xyz[R0]
are equivalent. (Rationale: The reason for requiring [R0] in the past
was to emphasise the regularity of the instruction representation. How-
ever, a primary aim of the design of Sigma16 is to provide subsetting of
the architecture, which supports a spiral approach to learning computer
architecture. Another aim is to provide a good platform for schools or
other students who will just learn a little of the system. Removing the
requirement for [R0] simplifies the language for a beginner. Further-
more, for an experienced expert programmer it’s more readable to omit
the [R0] as this reduces the amount of clutter in the code.)

108



• Allow lower case "r" in register names. In previous versions, elements of
the register file required an upper case R: for example, R8. Now you can
write r8 as well as R8, and both names refer to the same register. (Of
course the same holds for the rest of the register file.) This is a trivial
syntax issue. There’s no technical reason to prefer r8 or R8; it’s just a
matter of personal preference. It may be easier to read r8 because the
lower case r is shorter than the digits. It’s good style to use either the
Rn or rn form consistently, but the assembly language doesn’t enforce
that. Labels are case sensitive but registers are not. Labels are case-
sensitive, so xyz and XYZ are distinct names, but registers are not labels,
and registers are not case sensitive.

There are some changes to the machine language that don’t affect assembly
language programs.

• Some of the opcodes have changed, so programs need to be reassembled.

• The word logic instructions inv, and, or, xor are now pseudoinstructions
that generate the logicw instruction. The assembly language syntax is
the same as before; only the underlying machine language representation
is different

There are some new instructions and features, as well as some instructions
and features that have been in the architecture for some time but weren’t
documented in the User Gude. These won’t affect existing programs.

[t1.3]

11.4 GPL3 license

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. https://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.
Preamble The GNU General Public License is a free, copyleft license for

software and other kinds of works.
The licenses for most software and other practical works are designed to

take away your freedom to share and change the works. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and
change all versions of a program–to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish), that

109

https://fsf.org/


you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can
do these things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the software, or if you modify it: re-
sponsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that you
received. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License giving you legal
permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that
there is no warranty for this free software. For both users’ and authors’ sake,
the GPL requires that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified
versions of the software inside them, although the manufacturer can do so.
This is fundamentally incompatible with the aim of protecting users’ freedom
to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit
the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States
should not allow patents to restrict development and use of software on general-
purpose computers, but in those that do, we wish to avoid the special danger
that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS

1. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this Li-

cense. Each licensee is addressed as “you”. “Licensees” and “recipients” may be
individuals or organizations.

110



To “modify” a work means to copy from or adapt all or part of the work in
a fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a “modified version” of the earlier work or a
work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without per-
mission, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying a pri-
vate copy. Propagation includes copying, distribution (with or without modi-
fication), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through a
computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that (1)
displays an appropriate copyright notice, and (2) tells the user that there is
no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options,
such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard
defined by a recognized standards body, or, in the case of interfaces specified for
a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than
the work as a whole, that (a) is included in the normal form of packaging
a Major Component, but which is not part of that Major Component, and
(b) serves only to enable use of the work with that Major Component, or to
implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific
operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run the
object code and to modify the work, including scripts to control those activities.
However, it does not include the work’s System Libraries, or general-purpose

111



tools or generally available free programs which are used unmodified in per-
forming those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source
files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as
by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regen-
erate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

1. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited permission to run the unmod-
ified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided
by copyright law.

You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. You may
convey covered works to others for the sole purpose of having them make mod-
ifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying
all material for which you do not control copyright. Those thus making or
running the covered works for you must do so exclusively on your behalf, un-
der your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it un-
necessary.

1. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

112



1. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and
you may offer support or warranty protection for a fee.

1. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce
it from the Program, in the form of source code under the terms of section 4,
provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and
giving a relevant date. b) The work must carry prominent notices stating that
it is released under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact all notices”. c)
You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it. d) If the work has interactive user interfaces,
each must display Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so. A compilation of a covered work with other separate
and independent works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger program, in
or on a volume of a storage or distribution medium, is called an “aggregate” if
the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.

1. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections
4 and 5, provided that you also convey the machine-readable Corresponding
Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including
a physical distribution medium), accompanied by the Corresponding Source
fixed on a durable physical medium customarily used for software interchange.

113



b) Convey the object code in, or embodied in, a physical product (including
a physical distribution medium), accompanied by a written offer, valid for at
least three years and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the software in the prod-
uct that is covered by this License, on a durable physical medium customarily
used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge. c) Convey individ-
ual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and non-
commercially, and only if you received the object code with such an offer, in
accord with subsection 6b. d) Convey the object code by offering access from
a designated place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source
along with the object code. If the place to copy the object code is a net-
work server, the Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying where to find
the Corresponding Source. Regardless of what server hosts the Corresponding
Source, you remain obligated to ensure that it is available for as long as needed
to satisfy these requirements. e) Convey the object code using peer-to-peer
transmission, provided you inform other peers where the object code and Cor-
responding Source of the work are being offered to the general public at no
charge under subsection 6d. A separable portion of the object code, whose
source code is excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation into a
dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received
by a particular user, “normally used” refers to a typical or common use of that
class of product, regardless of the status of the particular user or of the way in
which the particular user actually uses, or expects or is expected to use, the
product. A product is a consumer product regardless of whether the product
has substantial commercial, industrial or non-consumer uses, unless such uses
represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, proce-
dures, authorization keys, or other information required to install and execute
modified versions of a covered work in that User Product from a modified ver-
sion of its Corresponding Source. The information must suffice to ensure that
the continued functioning of the modified object code is in no case prevented

114



or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifi-

cally for use in, a User Product, and the conveying occurs as part of a transac-
tion in which the right of possession and use of the User Product is transferred
to the recipient in perpetuity or for a fixed term (regardless of how the trans-
action is characterized), the Corresponding Source conveyed under this section
must be accompanied by the Installation Information. But this requirement
does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates for
a work that has been modified or installed by the recipient, or for the User
Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented (and
with an implementation available to the public in source code form), and must
require no special password or key for unpacking, reading or copying.

1. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License
by making exceptions from one or more of its conditions. Additional permis-
sions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under appli-
cable law. If additional permissions apply only to part of the Program, that
part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove
any additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when
you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate
copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or b) Requiring preservation of specified
reasonable legal notices or author attributions in that material or in the Ap-
propriate Legal Notices displayed by works containing it; or c) Prohibiting
misrepresentation of the origin of that material, or requiring that modified

115



versions of such material be marked in reasonable ways as different from the
original version; or d) Limiting the use for publicity purposes of names of licen-
sors or authors of the material; or e) Declining to grant rights under trademark
law for use of some trade names, trademarks, or service marks; or f) Requir-
ing indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assump-
tions directly impose on those licensors and authors. All other non-permissive
additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a
notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this License,
you may add to a covered work material governed by the terms of that li-
cense document, provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms that
apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form
of a separately written license, or stated as exceptions; the above requirements
apply either way.

1. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void,
and will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reason-
able means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

1. Acceptance Not Required for Having Copies.

116



You are not required to accept this License in order to receive or run a copy
of the Program. Ancillary propagation of a covered work occurring solely as a
consequence of using peer-to-peer transmission to receive a copy likewise does
not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or prop-
agating a covered work, you indicate your acceptance of this License to do
so.

1. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance by
third parties with this License.

An “entity transaction” is a transaction transferring control of an organi-
zation, or substantially all assets of one, or subdividing an organization, or
merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of
the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose a
license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or coun-
terclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

1. Patents.

A “contributor” is a copyright holder who authorizes use under this License of
the Program or a work on which the Program is based. The work thus licensed
is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permitted by this License, of making,
using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor
version. For purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell, offer
for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

117



In the following three paragraphs, a “patent license” is any express agree-
ment or commitment, however denominated, not to enforce a patent (such as
an express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and
the Corresponding Source of the work is not available for anyone to copy,
free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself
of the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work
in a country, or your recipient’s use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and grant
a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope
of its coverage, prohibits the exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which
you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any im-
plied license or other defenses to infringement that may otherwise be available
to you under applicable patent law.

1. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or oth-
erwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot convey a covered work so

118



as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

1. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to
link or combine any covered work with a work licensed under version 3 of
the GNU Affero General Public License into a single combined work, and to
convey the resulting work. The terms of this License will continue to apply to
the part which is the covered work, but the special requirements of the GNU
Affero General Public License, section 13, concerning interaction through a
network will apply to the combination as such.

1. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the
GNU General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public License
“or any later version” applies to it, you have the option of following the terms
and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of
the GNU General Public License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright
holder as a result of your choosing to follow a later version.

1. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

119



FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

1. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

1. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot
be given local legal effect according to their terms, reviewing courts shall apply
local law that most closely approximates an absolute waiver of all civil liability
in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs If you develop a new

program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively state the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

120



You should have received a copy of the GNU General Public License along
with this program. If not, see https://www.gnu.org/licenses/. Also add
information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like
this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This program comes
with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free
software, and you are welcome to redistribute it under certain conditions; type
‘show c’ for Details. The hypothetical commands ‘show w’ and ‘show c’ should
show the appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you would use
an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser Gen-
eral Public License instead of this License. But first, please read https:
//www.gnu.org/licenses/why-not-lgpl.html.

121

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
https://www.gnu.org/licenses/why-not-lgpl.html


Index
architecture, 5
assembler, 5

122


	Introduction
	Core architecture tutorials
	Hello, world!
	A quick tour
	Registers, constants, and arithmetic
	Keeping variables in memory
	Assembly language
	Editing files
	Jumps and conditionals
	Loops
	Machine language
	Pseudoinstructions
	A strange program
	Breakpoints
	Trap break
	External break

	Summary of core instruction formats
	RRR format
	RX format

	Summary of core instructions

	Standard architecture tutorials
	Logic
	Shifting
	Bit fields
	Saving registers for procedure call
	Branching to pc-relative address
	Stack instructions
	Arithmetic on natural numbers
	Modules and linking
	System control registers
	Interrupts

	The Sigma16 architecture
	Implementations
	Subsystems
	Words
	Indexing bits in a word
	Fields
	Natural numbers
	Integers
	Notations for a word

	Memory
	Registers
	Register file
	Instruction control registers
	Interrupt control registers
	Memory management registers

	Instruction representation
	RRR format
	RX format
	EXP format
	Notation for machine language


	Instruction set
	Accessing memory
	lea
	load
	store
	Stacks
	Stack frames

	Arithmetic
	add
	sub
	mul
	div
	cmp
	addc
	muln
	divn

	Jumps
	jump
	jumpc0, jumpc1
	jumpz, jumpnz
	jal

	Branches
	brf, brb
	brfc0, brbc0, brfc1, brbc1
	brfz, brbz, brfnz, brbnz
	dispatch

	Logic
	General logic functions
	Word logic: logicw
	Pseudoinstructions: invw, andw, orw, xorw
	Bit logic within a register: logicr
	Pseudoinstructions invr, andr, orr, xorb
	Bit logic across registers: logicb
	Pseudoinstructions invb, andb, orb, xorb
	Pseudoinstructions setb, clearb, moveb, movebi

	Bit manipulation
	Shifting: shiftl, shiftr
	Bit fields: extract, extracti

	System control
	Request to OS: trap
	Accessing control: getctl, putctl
	Context switching: resume
	Timer: timeron, timeroff


	Summary of instruction set
	RRR format
	RX format
	EXP format


	Assembly language
	Programs, modules, and files
	Standalone programs
	Modules
	Modules page
	Editor page
	Files

	Fixed and relocatable values
	Expressions
	Location counter
	Attributes

	Code generators
	Instructions
	Pseudoinstructions
	data

	Directives
	module
	import
	export
	equ
	reserve
	org


	Object code and linker
	Object language
	Object statement syntax
	module
	org
	data
	import
	export
	relocate

	Module metadata
	Linker
	Booter
	Executable code


	Programming
	Structure of a program
	How to perform commmon tasks
	Using extract
	Copying one register to another

	Compilation
	Errors: avoiding, finding, and fixing
	Critical regions
	Robust programming
	Error messages
	Runtime debugging
	Breakpoints


	Installation
	Command line tools
	node and npm
	Configuring the shell
	Testing the installation
	Building Sigma16


	About Sigma16
	Copyright and license
	In case of problems
	Release notes
	Version 3.5.0, January 2023
	Version 3.4.0
	Version 3.3.2, April 2021
	Version 3.2.3, development from April 2021
	Version 3.2.2, March 2021
	Version 3.2.1, February 2021

	GPL3 license


